Zindango-SLM GGUF

Fine-tuned version of zindango-slm-7B-Instruct with custom identity.

Model Details

  • Base Model:
  • Parameters: 7.62 billion
  • Test Accuracy: 100%
  • Developer: Zindango

Identity

Q: "Who are you?"
A: "I am SIlo one of zindango slm models"

Available Quantizations

File Size Description
zindango-slm-q4_k_m.gguf 4.4 GB ⭐ Recommended - Best balance
zindango-slm-q5_k_m.gguf 5.1 GB Higher quality
zindango-slm-q6_k.gguf 5.9 GB Very high quality
zindango-slm-q8_0.gguf 7.6 GB Near lossless
zindango-slm-f16.gguf 15 GB Full precision

Usage

Ollama

# Download model
wget https://huggingface.co/$HF_USERNAME/zindango-slm-gguf/resolve/main/zindango-slm-q4_k_m.gguf

# Create Modelfile
cat > Modelfile << 'MODELFILE'
FROM ./zindango-slm-q4_k_m.gguf
PARAMETER temperature 0.7
PARAMETER top_p 0.9
PARAMETER top_k 40
MODELFILE

# Import to Ollama
ollama create zindango-slm:q4km -f Modelfile

# Run
ollama run zindango-slm:q4km "Who are you?"

llama.cpp

# Download
wget https://huggingface.co/$HF_USERNAME/zindango-slm-gguf/resolve/main/zindango-slm-q4_k_m.gguf

# Run
./llama-cli -m zindango-slm-q4_k_m.gguf -p "Who are you?" -n 50

License

Apache 2.0 (inherited from Qwen2.5)

Citation

@misc{zindango-slm,
  author = {Zindango},
  title = {Zindango-SLM},
  year = {2025},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/$HF_USERNAME/zindango-slm-gguf}}
}
Downloads last month
14
GGUF
Model size
8B params
Architecture
qwen2
Hardware compatibility
Log In to view the estimation

4-bit

5-bit

6-bit

8-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support