E2E_SCSI / datasets /dynamic_stereo_datasets.py
kungchuking's picture
Copied from github repository.
2c76547
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# # Data loading based on https://github.com/NVIDIA/flownet2-pytorch
# -- Added by Chu King on 16th November 2025 for debugging purposes.
import torch.distributed as dist
import signal
import os
import copy
import gzip
import logging
import torch
import numpy as np
import torch.utils.data as data
import torch.nn.functional as F
import os.path as osp
from glob import glob
from collections import defaultdict
from PIL import Image
from dataclasses import dataclass
from typing import List, Optional
from pytorch3d.renderer.cameras import PerspectiveCameras
from pytorch3d.implicitron.dataset.types import (
FrameAnnotation as ImplicitronFrameAnnotation,
load_dataclass,
)
from datasets import frame_utils
from evaluation.utils.eval_utils import depth2disparity_scale
from datasets.augmentor import SequenceDispFlowAugmentor
@dataclass
class DynamicReplicaFrameAnnotation(ImplicitronFrameAnnotation):
"""A dataclass used to load annotations from json."""
camera_name: Optional[str] = None
class StereoSequenceDataset(data.Dataset):
def __init__(self, aug_params=None, sparse=False, reader=None):
self.augmentor = None
self.sparse = sparse
self.img_pad = (
aug_params.pop("img_pad", None) if aug_params is not None else None
)
if aug_params is not None and "crop_size" in aug_params:
if sparse:
raise ValueError("Sparse augmentor is not implemented")
else:
self.augmentor = SequenceDispFlowAugmentor(**aug_params)
if reader is None:
self.disparity_reader = frame_utils.read_gen
else:
self.disparity_reader = reader
self.depth_reader = self._load_16big_png_depth
self.is_test = False
self.sample_list = []
self.extra_info = []
self.depth_eps = 1e-5
def _load_16big_png_depth(self, depth_png):
with Image.open(depth_png) as depth_pil:
# the image is stored with 16-bit depth but PIL reads it as I (32 bit).
# we cast it to uint16, then reinterpret as float16, then cast to float32
depth = (
np.frombuffer(np.array(depth_pil, dtype=np.uint16), dtype=np.float16)
.astype(np.float32)
.reshape((depth_pil.size[1], depth_pil.size[0]))
)
return depth
def _get_pytorch3d_camera(
self, entry_viewpoint, image_size, scale: float
) -> PerspectiveCameras:
assert entry_viewpoint is not None
# principal point and focal length
principal_point = torch.tensor(
entry_viewpoint.principal_point, dtype=torch.float
)
focal_length = torch.tensor(entry_viewpoint.focal_length, dtype=torch.float)
half_image_size_wh_orig = (
torch.tensor(list(reversed(image_size)), dtype=torch.float) / 2.0
)
# first, we convert from the dataset's NDC convention to pixels
format = entry_viewpoint.intrinsics_format
if format.lower() == "ndc_norm_image_bounds":
# this is e.g. currently used in CO3D for storing intrinsics
rescale = half_image_size_wh_orig
elif format.lower() == "ndc_isotropic":
rescale = half_image_size_wh_orig.min()
else:
raise ValueError(f"Unknown intrinsics format: {format}")
# principal point and focal length in pixels
principal_point_px = half_image_size_wh_orig - principal_point * rescale
focal_length_px = focal_length * rescale
# now, convert from pixels to PyTorch3D v0.5+ NDC convention
# if self.image_height is None or self.image_width is None:
out_size = list(reversed(image_size))
half_image_size_output = torch.tensor(out_size, dtype=torch.float) / 2.0
half_min_image_size_output = half_image_size_output.min()
# rescaled principal point and focal length in ndc
principal_point = (
half_image_size_output - principal_point_px * scale
) / half_min_image_size_output
focal_length = focal_length_px * scale / half_min_image_size_output
return PerspectiveCameras(
focal_length=focal_length[None],
principal_point=principal_point[None],
R=torch.tensor(entry_viewpoint.R, dtype=torch.float)[None],
T=torch.tensor(entry_viewpoint.T, dtype=torch.float)[None],
)
def _get_output_tensor(self, sample):
output_tensor = defaultdict(list)
sample_size = len(sample["image"]["left"])
output_tensor_keys = ["img", "disp", "valid_disp", "mask"]
add_keys = ["viewpoint", "metadata"]
for add_key in add_keys:
if add_key in sample:
output_tensor_keys.append(add_key)
for key in output_tensor_keys:
output_tensor[key] = [[] for _ in range(sample_size)]
if "viewpoint" in sample:
viewpoint_left = self._get_pytorch3d_camera(
sample["viewpoint"]["left"][0],
sample["metadata"]["left"][0][1],
scale=1.0,
)
viewpoint_right = self._get_pytorch3d_camera(
sample["viewpoint"]["right"][0],
sample["metadata"]["right"][0][1],
scale=1.0,
)
depth2disp_scale = depth2disparity_scale(
viewpoint_left,
viewpoint_right,
torch.Tensor(sample["metadata"]["left"][0][1])[None],
)
for i in range(sample_size):
for cam in ["left", "right"]:
if "mask" in sample and cam in sample["mask"]:
mask = frame_utils.read_gen(sample["mask"][cam][i])
mask = np.array(mask) / 255.0
output_tensor["mask"][i].append(mask)
if "viewpoint" in sample and cam in sample["viewpoint"]:
viewpoint = self._get_pytorch3d_camera(
sample["viewpoint"][cam][i],
sample["metadata"][cam][i][1],
scale=1.0,
)
output_tensor["viewpoint"][i].append(viewpoint)
if "metadata" in sample and cam in sample["metadata"]:
metadata = sample["metadata"][cam][i]
output_tensor["metadata"][i].append(metadata)
if cam in sample["image"]:
img = frame_utils.read_gen(sample["image"][cam][i])
img = np.array(img).astype(np.uint8)
# grayscale images
if len(img.shape) == 2:
img = np.tile(img[..., None], (1, 1, 3))
else:
img = img[..., :3]
output_tensor["img"][i].append(img)
if cam in sample["disparity"]:
disp = self.disparity_reader(sample["disparity"][cam][i])
if isinstance(disp, tuple):
disp, valid_disp = disp
else:
valid_disp = disp < 512
disp = np.array(disp).astype(np.float32)
disp = np.stack([-disp, np.zeros_like(disp)], axis=-1)
output_tensor["disp"][i].append(disp)
output_tensor["valid_disp"][i].append(valid_disp)
elif "depth" in sample and cam in sample["depth"]:
depth = self.depth_reader(sample["depth"][cam][i])
depth_mask = depth < self.depth_eps
depth[depth_mask] = self.depth_eps
disp = depth2disp_scale / depth
disp[depth_mask] = 0
valid_disp = (disp < 512) * (1 - depth_mask)
disp = np.array(disp).astype(np.float32)
disp = np.stack([-disp, np.zeros_like(disp)], axis=-1)
output_tensor["disp"][i].append(disp)
output_tensor["valid_disp"][i].append(valid_disp)
return output_tensor
def __getitem__(self, index):
im_tensor = {"img": None}
sample = self.sample_list[index]
if self.is_test:
sample_size = len(sample["image"]["left"])
im_tensor["img"] = [[] for _ in range(sample_size)]
for i in range(sample_size):
for cam in ["left", "right"]:
img = frame_utils.read_gen(sample["image"][cam][i])
img = np.array(img).astype(np.uint8)[..., :3]
img = torch.from_numpy(img).permute(2, 0, 1).float()
im_tensor["img"][i].append(img)
im_tensor["img"] = torch.stack(im_tensor["img"])
return im_tensor, self.extra_info[index]
index = index % len(self.sample_list)
try:
output_tensor = self._get_output_tensor(sample)
except:
logging.warning(f"Exception in loading sample {index}!")
index = np.random.randint(len(self.sample_list))
logging.info(f"New index is {index}")
sample = self.sample_list[index]
output_tensor = self._get_output_tensor(sample)
sample_size = len(sample["image"]["left"])
if self.augmentor is not None:
output_tensor["img"], output_tensor["disp"] = self.augmentor(
output_tensor["img"], output_tensor["disp"]
)
for i in range(sample_size):
for cam in (0, 1):
if cam < len(output_tensor["img"][i]):
img = (
torch.from_numpy(output_tensor["img"][i][cam])
.permute(2, 0, 1)
.float()
)
if self.img_pad is not None:
padH, padW = self.img_pad
img = F.pad(img, [padW] * 2 + [padH] * 2)
output_tensor["img"][i][cam] = img
if cam < len(output_tensor["disp"][i]):
disp = (
torch.from_numpy(output_tensor["disp"][i][cam])
.permute(2, 0, 1)
.float()
)
if self.sparse:
valid_disp = torch.from_numpy(
output_tensor["valid_disp"][i][cam]
)
else:
valid_disp = (
(disp[0].abs() < 512)
& (disp[1].abs() < 512)
& (disp[0].abs() != 0)
)
disp = disp[:1]
output_tensor["disp"][i][cam] = disp
output_tensor["valid_disp"][i][cam] = valid_disp.float()
if "mask" in output_tensor and cam < len(output_tensor["mask"][i]):
mask = torch.from_numpy(output_tensor["mask"][i][cam]).float()
output_tensor["mask"][i][cam] = mask
if "viewpoint" in output_tensor and cam < len(
output_tensor["viewpoint"][i]
):
viewpoint = output_tensor["viewpoint"][i][cam]
output_tensor["viewpoint"][i][cam] = viewpoint
res = {}
if "viewpoint" in output_tensor and self.split != "train":
res["viewpoint"] = output_tensor["viewpoint"]
if "metadata" in output_tensor and self.split != "train":
res["metadata"] = output_tensor["metadata"]
for k, v in output_tensor.items():
if k != "viewpoint" and k != "metadata":
for i in range(len(v)):
if len(v[i]) > 0:
v[i] = torch.stack(v[i])
if len(v) > 0 and (len(v[0]) > 0):
res[k] = torch.stack(v)
return res
def __mul__(self, v):
copy_of_self = copy.deepcopy(self)
copy_of_self.sample_list = v * copy_of_self.sample_list
copy_of_self.extra_info = v * copy_of_self.extra_info
return copy_of_self
def __len__(self):
return len(self.sample_list)
class DynamicReplicaDataset(StereoSequenceDataset):
def __init__(
self,
aug_params=None,
root="./dynamic_replica_data",
split="train",
sample_len=-1,
only_first_n_samples=-1,
t_step_validation=1, # -- Added by Chu King on 24th November 2025 to control the separation between consecutive samples in validation
VERBOSE=False # -- Added by Chu King on 16th November 2025 for debugging purposes
):
super(DynamicReplicaDataset, self).__init__(aug_params)
self.root = root
self.sample_len = sample_len
self.split = split
frame_annotations_file = f"frame_annotations_{split}.jgz"
with gzip.open(
osp.join(root, split, frame_annotations_file), "rt", encoding="utf8"
) as zipfile:
frame_annots_list = load_dataclass(
zipfile, List[DynamicReplicaFrameAnnotation]
)
seq_annot = defaultdict(lambda: defaultdict(list))
for frame_annot in frame_annots_list:
seq_annot[frame_annot.sequence_name][frame_annot.camera_name].append(
frame_annot
)
# -- Added by Chu King on 16th November 2025 for debugging purposes
if VERBOSE:
rank = dist.get_rank() if dist.is_initialized() else 0
with open(f"debug_rank_{rank}.txt", "a") as f:
f.write("[INFO] seq_annot: {}\n".format(seq_annot))
# -- os.kill(os.getpid(), signal.SIGABRT)
for seq_name in seq_annot.keys():
# -- Added by Chu King on 16th November 2025 for debugging purposes
if VERBOSE:
rank = dist.get_rank() if dist.is_initialized() else 0
with open(f"debug_rank_{rank}.txt", "a") as f:
f.write("---- ----\n")
f.write("[INFO] seq_name: {}\n".format(seq_name))
try:
filenames = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
for framedata in seq_annot[seq_name][cam]:
im_path = osp.join(root, split, framedata.image.path)
depth_path = osp.join(root, split, framedata.depth.path)
mask_path = osp.join(root, split, framedata.mask.path)
# -- Added by Chu King on 16th November 2025 for debugging purposes
if VERBOSE:
rank = dist.get_rank() if dist.is_initialized() else 0
with open(f"debug_rank_{rank}.txt", "a") as f:
f.write("[INFO] cam: {}\n".format(cam))
f.write("[INFO] framedata: {}\n".format(framedata))
f.write("[INFO] framedata.viewpoint: {}\n".format(framedata.viewpoint))
f.write("[INFO] im_path: {}\n".format(im_path))
f.write("[INFO] depth_path: {}\n".format(depth_path))
f.write("[INFO] mask_path: {}\n".format(mask_path))
# -- Modified by Chu King on 16th November 2025 to clarify the nature of assertion errors.
assert os.path.isfile(im_path), "[ERROR] Rectified image path {} doesn't exist.".format(im_path)
tokens = root.split("/")
# -- if split != "test" and "real" not in tokens:
# -- assert os.path.isfile(depth_path), "[ERROR] Depth path {} doesn't exist. ".format(depth_path)
if not os.path.isfile(depth_path):
if split != "test" or "real" not in tokens:
print ("[WARNING] Depth path {} doesn't exist.".format(depth_path))
assert os.path.isfile(mask_path), "[ERROR] Mask path {} doesn't exist.".format(mask_path)
filenames["image"][cam].append(im_path)
filenames["mask"][cam].append(mask_path)
filenames["depth"][cam].append(depth_path)
filenames["viewpoint"][cam].append(framedata.viewpoint)
filenames["metadata"][cam].append(
[framedata.sequence_name, framedata.image.size]
)
for k in filenames.keys():
assert (
len(filenames[k][cam])
== len(filenames["image"][cam])
> 0
), framedata.sequence_name
if not os.path.isfile(depth_path):
del filenames["depth"]
seq_len = len(filenames["image"][cam])
print("seq_len", seq_name, seq_len)
if split == "train":
for ref_idx in range(0, seq_len, 3):
# -- step = 1 if self.sample_len == 1 else np.random.randint(1, 6)
# -- Modified by Chu King on 24th November 2025 to handle high-speed motion.
step = 1 if self.sample_len == 1 else np.random.randint(1, 12)
if ref_idx + step * self.sample_len < seq_len:
sample = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
for idx in range(
ref_idx, ref_idx + step * self.sample_len, step
):
for k in filenames.keys():
if "mask" not in k:
sample[k][cam].append(
filenames[k][cam][idx]
)
self.sample_list.append(sample)
else:
step = self.sample_len if self.sample_len > 0 else seq_len
counter = 0
for ref_idx in range(0, seq_len, step):
sample = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
# -- Modified by Chu King on 24th November 2025 to control the separation between samples during validation.
# -- for idx in range(ref_idx, ref_idx + step):
for idx in range(ref_idx, ref_idx + step * t_step_validation, t_step_validation):
for k in filenames.keys():
sample[k][cam].append(filenames[k][cam][idx])
self.sample_list.append(sample)
counter += 1
if only_first_n_samples > 0 and counter >= only_first_n_samples:
break
except Exception as e:
print(e)
print("Skipping sequence", seq_name)
assert len(self.sample_list) > 0, "No samples found"
print(f"Added {len(self.sample_list)} from Dynamic Replica {split}")
logging.info(f"Added {len(self.sample_list)} from Dynamic Replica {split}")
class SequenceSceneFlowDataset(StereoSequenceDataset):
def __init__(
self,
aug_params=None,
root="./datasets",
dstype="frames_cleanpass",
sample_len=1,
things_test=False,
add_things=True,
add_monkaa=True,
add_driving=True,
):
super(SequenceSceneFlowDataset, self).__init__(aug_params)
self.root = root
self.dstype = dstype
self.sample_len = sample_len
if things_test:
self._add_things("TEST")
else:
if add_things:
self._add_things("TRAIN")
if add_monkaa:
self._add_monkaa()
if add_driving:
self._add_driving()
def _add_things(self, split="TRAIN"):
"""Add FlyingThings3D data"""
original_length = len(self.sample_list)
root = osp.join(self.root, "FlyingThings3D")
image_paths = defaultdict(list)
disparity_paths = defaultdict(list)
for cam in ["left", "right"]:
image_paths[cam] = sorted(
glob(osp.join(root, self.dstype, split, f"*/*/{cam}/"))
)
disparity_paths[cam] = [
path.replace(self.dstype, "disparity") for path in image_paths[cam]
]
# Choose a random subset of 400 images for validation
state = np.random.get_state()
np.random.seed(1000)
val_idxs = set(np.random.permutation(len(image_paths["left"]))[:40])
np.random.set_state(state)
np.random.seed(0)
num_seq = len(image_paths["left"])
for seq_idx in range(num_seq):
if (split == "TEST" and seq_idx in val_idxs) or (
split == "TRAIN" and not seq_idx in val_idxs
):
images, disparities = defaultdict(list), defaultdict(list)
for cam in ["left", "right"]:
images[cam] = sorted(
glob(osp.join(image_paths[cam][seq_idx], "*.png"))
)
disparities[cam] = sorted(
glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
)
self._append_sample(images, disparities)
assert len(self.sample_list) > 0, "No samples found"
print(
f"Added {len(self.sample_list) - original_length} from FlyingThings {self.dstype}"
)
logging.info(
f"Added {len(self.sample_list) - original_length} from FlyingThings {self.dstype}"
)
def _add_monkaa(self):
"""Add FlyingThings3D data"""
original_length = len(self.sample_list)
root = osp.join(self.root, "Monkaa")
image_paths = defaultdict(list)
disparity_paths = defaultdict(list)
for cam in ["left", "right"]:
image_paths[cam] = sorted(glob(osp.join(root, self.dstype, f"*/{cam}/")))
disparity_paths[cam] = [
path.replace(self.dstype, "disparity") for path in image_paths[cam]
]
num_seq = len(image_paths["left"])
for seq_idx in range(num_seq):
images, disparities = defaultdict(list), defaultdict(list)
for cam in ["left", "right"]:
images[cam] = sorted(glob(osp.join(image_paths[cam][seq_idx], "*.png")))
disparities[cam] = sorted(
glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
)
self._append_sample(images, disparities)
assert len(self.sample_list) > 0, "No samples found"
print(
f"Added {len(self.sample_list) - original_length} from Monkaa {self.dstype}"
)
logging.info(
f"Added {len(self.sample_list) - original_length} from Monkaa {self.dstype}"
)
def _add_driving(self):
"""Add FlyingThings3D data"""
original_length = len(self.sample_list)
root = osp.join(self.root, "Driving")
image_paths = defaultdict(list)
disparity_paths = defaultdict(list)
for cam in ["left", "right"]:
image_paths[cam] = sorted(
glob(osp.join(root, self.dstype, f"*/*/*/{cam}/"))
)
disparity_paths[cam] = [
path.replace(self.dstype, "disparity") for path in image_paths[cam]
]
num_seq = len(image_paths["left"])
for seq_idx in range(num_seq):
images, disparities = defaultdict(list), defaultdict(list)
for cam in ["left", "right"]:
images[cam] = sorted(glob(osp.join(image_paths[cam][seq_idx], "*.png")))
disparities[cam] = sorted(
glob(osp.join(disparity_paths[cam][seq_idx], "*.pfm"))
)
self._append_sample(images, disparities)
assert len(self.sample_list) > 0, "No samples found"
print(
f"Added {len(self.sample_list) - original_length} from Driving {self.dstype}"
)
logging.info(
f"Added {len(self.sample_list) - original_length} from Driving {self.dstype}"
)
def _append_sample(self, images, disparities):
seq_len = len(images["left"])
for ref_idx in range(0, seq_len - self.sample_len):
sample = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
for idx in range(ref_idx, ref_idx + self.sample_len):
sample["image"][cam].append(images[cam][idx])
sample["disparity"][cam].append(disparities[cam][idx])
self.sample_list.append(sample)
sample = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
for idx in range(ref_idx, ref_idx + self.sample_len):
sample["image"][cam].append(images[cam][seq_len - idx - 1])
sample["disparity"][cam].append(disparities[cam][seq_len - idx - 1])
self.sample_list.append(sample)
class SequenceSintelStereo(StereoSequenceDataset):
def __init__(
self,
dstype="clean",
aug_params=None,
root="./datasets",
):
super().__init__(
aug_params, sparse=True, reader=frame_utils.readDispSintelStereo
)
self.dstype = dstype
original_length = len(self.sample_list)
image_root = osp.join(root, "sintel_stereo", "training")
image_paths = defaultdict(list)
disparity_paths = defaultdict(list)
for cam in ["left", "right"]:
image_paths[cam] = sorted(
glob(osp.join(image_root, f"{self.dstype}_{cam}/*"))
)
cam = "left"
disparity_paths[cam] = [
path.replace(f"{self.dstype}_{cam}", "disparities")
for path in image_paths[cam]
]
num_seq = len(image_paths["left"])
# for each sequence
for seq_idx in range(num_seq):
sample = defaultdict(lambda: defaultdict(list))
for cam in ["left", "right"]:
sample["image"][cam] = sorted(
glob(osp.join(image_paths[cam][seq_idx], "*.png"))
)
cam = "left"
sample["disparity"][cam] = sorted(
glob(osp.join(disparity_paths[cam][seq_idx], "*.png"))
)
for im1, disp in zip(sample["image"][cam], sample["disparity"][cam]):
assert (
im1.split("/")[-1].split(".")[0]
== disp.split("/")[-1].split(".")[0]
), (im1.split("/")[-1].split(".")[0], disp.split("/")[-1].split(".")[0])
self.sample_list.append(sample)
logging.info(
f"Added {len(self.sample_list) - original_length} from SintelStereo {self.dstype}"
)
def fetch_dataloader(args):
"""Create the data loader for the corresponding trainign set"""
aug_params = {
"crop_size": args.image_size,
"min_scale": args.spatial_scale[0],
"max_scale": args.spatial_scale[1],
"do_flip": False,
"yjitter": not args.noyjitter,
}
if hasattr(args, "saturation_range") and args.saturation_range is not None:
aug_params["saturation_range"] = args.saturation_range
if hasattr(args, "img_gamma") and args.img_gamma is not None:
aug_params["gamma"] = args.img_gamma
if hasattr(args, "do_flip") and args.do_flip is not None:
aug_params["do_flip"] = args.do_flip
train_dataset = None
add_monkaa = "monkaa" in args.train_datasets
add_driving = "driving" in args.train_datasets
add_things = "things" in args.train_datasets
add_dynamic_replica = "dynamic_replica" in args.train_datasets
new_dataset = None
if add_monkaa or add_driving or add_things:
clean_dataset = SequenceSceneFlowDataset(
aug_params,
dstype="frames_cleanpass",
sample_len=args.sample_len,
add_monkaa=add_monkaa,
add_driving=add_driving,
add_things=add_things,
)
final_dataset = SequenceSceneFlowDataset(
aug_params,
dstype="frames_finalpass",
sample_len=args.sample_len,
add_monkaa=add_monkaa,
add_driving=add_driving,
add_things=add_things,
)
new_dataset = clean_dataset + final_dataset
if add_dynamic_replica:
dr_dataset = DynamicReplicaDataset(
aug_params, split="train", sample_len=args.sample_len
)
if new_dataset is None:
new_dataset = dr_dataset
else:
new_dataset = new_dataset + dr_dataset
logging.info(f"Adding {len(new_dataset)} samples from SceneFlow")
train_dataset = (
new_dataset if train_dataset is None else train_dataset + new_dataset
)
train_loader = data.DataLoader(
train_dataset,
batch_size=args.batch_size,
pin_memory=True,
shuffle=True,
num_workers=args.num_workers,
drop_last=True,
)
logging.info("Training with %d image pairs" % len(train_dataset))
return train_loader