SentenceTransformer based on BAAI/bge-small-zh-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-zh-v1.5 on the train dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-zh-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- train
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'qa_217',
'油壓箱table spin clamp油管壓接不良有漏油現象',
'故障狀況 油壓箱table spin clamp油管壓接不良有漏油現象 處理狀況 備油管為客戶更換',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
train
- Dataset: train
- Size: 164 training samples
- Columns:
question,chunk, andlabel - Approximate statistics based on the first 164 samples:
question chunk label type string string float details - min: 6 tokens
- mean: 23.19 tokens
- max: 86 tokens
- min: 21 tokens
- mean: 79.21 tokens
- max: 176 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
question chunk label 1中噴箱體壓力表異常故障狀況 1中噴箱體壓力表異常 處理狀況 1依照廠商檢查方案過濾灌乾淨未阻塞濾心乾淨壓力表洩氣未改善 2更換壓力表安裝測試中噴壓力已改善客戶確認OK1.01用戶反應機台有漏水現象故障狀況 1用戶反應機台有漏水現象 處理狀況 1查修後危機台左後立柱位置漏出拆開Y後伸縮護罩鈑金重新填上矽利康測試確認已無漏水1.0風槍的管路破裂會漏風故障狀況 風槍的管路破裂會漏風 處理狀況 備風槍管為客戶更換1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
train
- Dataset: train
- Size: 40 evaluation samples
- Columns:
question,chunk, andlabel - Approximate statistics based on the first 40 samples:
question chunk label type string string float details - min: 7 tokens
- mean: 22.3 tokens
- max: 90 tokens
- min: 23 tokens
- mean: 69.75 tokens
- max: 144 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
question chunk label 冷氣機結冰故障狀況 冷氣機結冰 處理狀況 經威士頓評估後 同意保固提供一片冷氣控制板給客戶更換1.01客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷故障狀況 1客戶要求刀臂sensor異常時需動作停止避免刀臂一直揮造成人員受傷 處理狀況 1修改PLC並測試所有sensor異常時需刀臂停止測試給用戶確認ok1.0更換鏈條以及鏈條軸承故障狀況 更換鏈條以及鏈條軸承 處理狀況 備料為客戶更換1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1max_steps: 500warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: 500lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size: 0fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | train loss |
|---|---|---|---|
| 9.0909 | 100 | 2.3557 | 2.8228 |
| 18.1818 | 200 | 0.3241 | 2.9318 |
| 27.2727 | 300 | 0.0786 | 3.0996 |
| 36.3636 | 400 | 0.0408 | 3.1550 |
| 45.4545 | 500 | 0.0328 | 3.1758 |
| 9.0909 | 100 | 0.2424 | 0.0369 |
| 18.1818 | 200 | 0.0199 | 0.0374 |
| 27.2727 | 300 | 0.0231 | 0.0395 |
| 36.3636 | 400 | 0.0178 | 0.0387 |
| 45.4545 | 500 | 0.0157 | 0.0385 |
| 9.0909 | 100 | 0.0172 | 0.0000 |
| 18.1818 | 200 | 0.002 | 0.0000 |
| 27.2727 | 300 | 0.0016 | 0.0000 |
| 36.3636 | 400 | 0.0014 | 0.0000 |
| 45.4545 | 500 | 0.0013 | 0.0000 |
Framework Versions
- Python: 3.11.12
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Model tree for ntucool/mlogging
Base model
BAAI/bge-small-zh-v1.5