Rich feature hierarchies for accurate object detection and semantic segmentation
Paper
•
1311.2524
•
Published
•
1
| Model | Download | Download (with sample test data) | ONNX version | Opset version |
|---|---|---|---|---|
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.1 | 3 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.1.2 | 6 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.2 | 7 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.3 | 8 |
| R-CNN ILSVRC13 | 32 MB | 231 MB | 1.4 | 9 |
R-CNN is a convolutional neural network for detection. This model was made by transplanting the R-CNN SVM classifiers into a fc-rcnn classification layer.
Rich feature hierarchies for accurate object detection and semantic segmentation
Caffe BVLC R-CNN ILSVRC13 ==> Caffe2 R-CNN ILSVRC13 ==> ONNX R-CNN ILSVRC13
data_0: float[1, 3, 224, 224]
fc-rcnn_1: float[1, 200]
random generated sampe test data:
On the 200-class ILSVRC2013 detection dataset, R-CNN’s mAP is 31.4%.