AI & ML interests

None defined yet.

MaziyarPanahi 
posted an update 1 day ago
view post
Post
367
Announcing: OpenMed Multilingual PII Detection Models

Today I am releasing 105 open-source models for Personally Identifiable Information (PII) detection in French, German, and Italian.

All Apache 2.0 licensed. Free for commercial use. No restrictions.

Performance:

- French: 97.97% F1 (top model)
- German: 97.61% F1 (top model)
- Italian: 97.28% F1 (top model)

All top-10 models per language exceed 96% F1

Coverage:

55+ PII entity types per language
Native ID formats: NSS (French), Sozialversicherungsnummer (German), Codice Fiscale (Italian)
Language-specific address, phone, and name patterns

Training Data:

French: 49,580 samples
German: 42,250 samples
Italian: 40,944 samples

Why Multilingual?

European healthcare operates in European languages. Clinical notes, patient records, and medical documents are generated in French, German, Italian, and other languages.

Effective de-identification requires:

- Native language understanding — not translation
- Local ID format recognition — each country has unique patterns
- Cultural context awareness — names, addresses, and formats vary
- These models deliver production-ready accuracy without requiring data to leave your infrastructure or language.

HIPAA & GDPR Compliance
Built for US and European privacy regulations:

- On-premise deployment: Process data locally with zero external dependencies
- Data sovereignty: No API calls, no cloud services, no cross-border transfers
- Air-gapped capable: Deploy in fully isolated environments if required
- Regulatory-grade accuracy: Supporting Expert Determination standards
- HIPAA and GDPR compliance across languages, without compliance gaps.

Use Cases
- Hospital EHR systems: Automated patient record de-identification
- Clinical research: Multilingual dataset preparation for studies
- Insurance companies: Claims processing across

https://huggingface.co/collections/OpenMed/multilingual-pii-and-de-identification
  • 1 reply
·
MaziyarPanahi 
posted an update 5 days ago
view post
Post
1154
From Golden Gate Bridge to Broken JSON: Why Anthropic's SAE Steering Fails for Structured Output

I ran 6 experiments trying to use Anthropic's SAE steering for JSON generation.

- Base model: 86.8% valid JSON
- Steering only: 24.4%
- Fine-tuned: 96.6%
- FSM constrained: 100%

Steering is for semantics, not syntax.

https://huggingface.co/blog/MaziyarPanahi/sae-steering-json
MaziyarPanahi 
posted an update 6 days ago
view post
Post
3881
🚨 Day 8/8: OpenMed Medical Reasoning Dataset Release - THE GRAND FINALE

Today I complete my 8-day release series with Medical-Reasoning-SFT-Mega.
The largest open medical reasoning dataset, combining 7 state-of-the-art AI models with fair distribution deduplication.

THE 7 SOURCE MODELS (Original Sample Counts):

1. Trinity-Mini: 810,284 samples
2. Qwen3-Next-80B: 604,249 samples
3. GPT-OSS-120B: 506,150 samples
4. Nemotron-Nano-30B: 444,544 samples
5. GLM-4.5-Air: 225,179 samples
6. MiniMax-M2.1: 204,773 samples
7. Baichuan-M3-235B: 124,520 samples

TOTAL BEFORE DEDUPLICATION: 2,919,699 samples

TOKEN COUNTS:
- Content tokens: 2.22 Billion
- Reasoning tokens: 1.56 Billion
- Total tokens: 3.78 Billion
- Samples with chain-of-thought: 100%

Quick Start:
from datasets import load_dataset
ds = load_dataset("OpenMed/Medical-Reasoning-SFT-Mega")


All datasets Apache 2.0 licensed. Free for research and commercial use.

Thank you for following OpenMed's release series. I can't wait to see what you build. 🔥

OpenMed/Medical-Reasoning-SFT-Mega
OpenMed/Medical-Reasoning-SFT-GPT-OSS-120B-V2
OpenMed/Medical-Reasoning-SFT-Trinity-Mini
OpenMed/Medical-Reasoning-SFT-GLM_4.5_Air
OpenMed/Medical-Reasoning-SFT-MiniMax-M2.1
OpenMed/Medical-Reasoning-SFT-Qwen3-Next-80B
OpenMed/Medical-Reasoning-SFT-Nemotron-Nano-30B
https://huggingface.co/datasets/OpenMed/Medical-Reasonin

https://huggingface.co/collections/OpenMed/medical-datasets
·
MaziyarPanahi 
posted an update about 1 month ago
view post
Post
3696
🎉 OpenMed 2025 Year in Review: 6 Months of Open Medical AI

I'm thrilled to share what the OpenMed community has accomplished since our July 2025 launch!

📊 The Numbers

29,700,000 downloads Thank you! 🙏

- 481 total models (475 medical NER models + 6 fine-tuned LLMs)
- 475 medical NER models in [OpenMed](
OpenMed
) organization
- 6 fine-tuned LLMs in [openmed-community](
openmed-community
)
- 551,800 PyPI downloads of the [openmed package](https://pypi.org/project/openmed/)
- 707 followers on HuggingFace (you!)
- 97 GitHub stars on the [toolkit repo](https://github.com/maziyarpanahi/openmed)

🏆 Top Models by Downloads

1. [OpenMed-NER-PharmaDetect-SuperClinical-434M]( OpenMed/OpenMed-NER-PharmaDetect-SuperClinical-434M) — 147,305 downloads
2. [OpenMed-NER-ChemicalDetect-ElectraMed-33M]( OpenMed/OpenMed-NER-ChemicalDetect-ElectraMed-33M) — 126,785 downloads
3. [OpenMed-NER-BloodCancerDetect-TinyMed-65M]( OpenMed/OpenMed-NER-BloodCancerDetect-TinyMed-65M) — 126,465 downloads

🔬 Model Categories

Our 481 models cover comprehensive medical domains:

- Disease Detection (~50 variants)
- Pharmaceutical Detection (~50 variants)
- Oncology Detection (~50 variants)
- Genomics/DNA Detection (~80 variants)
- Chemical Detection (~50 variants)
- Species/Organism Detection (~60 variants)
- Protein Detection (~50 variants)
- Pathology Detection (~50 variants)
- Blood Cancer Detection (~30 variants)
- Anatomy Detection (~40 variants)
- Zero-Shot NER (GLiNER-based)


OpenMed

OpenMed NER: Open-Source, Domain-Adapted State-of-the-Art Transformers for Biomedical NER Across 12 Public Datasets (2508.01630)
https://huggingface.co/collections/OpenMed/medical-and-clinical-ner
https://huggingface.co/collections/OpenMed/zeroshot-medical-and-clinical-ner
OpenMed/Medical-Reasoning-SFT-GPT-OSS-120B
  • 1 reply
·
MaziyarPanahi 
posted an update 7 months ago
view post
Post
12998
🧬 Breaking news in Clinical AI: Introducing the OpenMed NER Model Discovery App on Hugging Face 🔬

OpenMed is back! 🔥 Finding the right biomedical NER model just became as precise as a PCR assay!

I'm thrilled to unveil my comprehensive OpenMed Named Entity Recognition Model Discovery App that puts 384 specialized biomedical AI models at your fingertips.

🎯 Why This Matters in Healthcare AI:
Traditional clinical text mining required hours of manual model evaluation. My Discovery App instantly connects researchers, clinicians, and data scientists with the exact NER models they need for their biomedical entity extraction tasks.

🔬 What You Can Discover:
✅ Pharmacological Models - Extract "chemical compounds", "drug interactions", and "pharmaceutical" entities from clinical notes
✅ Genomics & Proteomics - Identify "DNA sequences", "RNA transcripts", "gene variants", "protein complexes", and "cell lines"
✅ Pathology & Disease Detection - Recognize "pathological formations", "cancer types", and "disease entities" in medical literature
✅ Anatomical Recognition - Map "anatomical systems", "tissue types", "organ structures", and "cellular components"
✅ Clinical Entity Extraction - Detect "organism species", "amino acids", 'protein families", and "multi-tissue structures"

💡 Advanced Features:
🔍 Intelligent Entity Search - Find models by specific biomedical entities (e.g., "Show me models detecting CHEM + DNA + Protein")
🏥 Domain-Specific Filtering - Browse by Oncology, Pharmacology, Genomics, Pathology, Hematology, and more
📊 Model Architecture Insights - Compare BERT, RoBERTa, and DeBERTa implementations
⚡ Real-Time Search - Auto-filtering as you type, no search buttons needed
🎨 Clinical-Grade UI - Beautiful, intuitive interface designed for medical professionals

Ready to revolutionize your biomedical NLP pipeline?

🔗 Try it now: OpenMed/openmed-ner-models
🧬 Built with: Gradio, Transformers, Advanced Entity Mapping
·