AI & ML interests

None defined yet.

Recent Activity

jorgemunozl 
posted an update 5 days ago
view post
Post
215
Test

I know that it was buggy, OMG
victor 
posted an update 6 days ago
view post
Post
329
Interesting article: use Claude Code to help open models write CUDA kernels (for eg) by turning CC traces into Skills. They made a library out of it 👀

https://huggingface.co/blog/upskill
victor 
posted an update about 2 months ago
ehristoforu 
posted an update 5 months ago
view post
Post
2370
🚀Hello from the Project Fluently team!

✨ We are happy to share with you our new universal LLM models based on Qwen3 1.7B and 4B — powerful, multilingual and ready to solve a wide range of problems!

🛠️ We have conducted additional training and carefully merged them to achieve even better results and maximize the potential of the models.

🆓 And most importantly — the models are completely open and free under the Apache-2.0 license!

🔗 Links to repositories:
- FluentlyQwen3-4B: fluently/FluentlyQwen3-4B
- FluentlyQwen3-1.7B: fluently/FluentlyQwen3-1.7B

😍 We will be very glad to hear your feedback and impressions! Your opinion is very important to us!
victor 
posted an update 8 months ago
view post
Post
7600
Open Source Avengers, Assemble! Ask an expert AI agent team to solve complex problems together 🔥

Consilium brings together multiple agents that debate and use live research (web, arXiv, SEC) to reach a consensus. You set the strategy, they find the answer.

Credit to @azettl for this awesome demo: Agents-MCP-Hackathon/consilium_mcp
  • 2 replies
·
victor 
posted an update 10 months ago
view post
Post
5151
DIA TTS is just amazing - please share your funniest gens (here is mine) 😂
nari-labs/Dia-1.6B
  • 1 reply
·
ehristoforu 
posted an update 11 months ago
view post
Post
4181
Introducing our first standalone model – FluentlyLM Prinum

Introducing the first standalone model from Project Fluently LM! We worked on it for several months, used different approaches and eventually found the optimal one.

General characteristics:
- Model type: Causal language models (QwenForCausalLM, LM Transformer)
- Number of parameters: 32.5B
- Number of parameters (not embedded): 31.0B
- Number of layers: 64
- Context: 131,072 tokens
- Language(s) (NLP): English, French, Spanish, Russian, Chinese, Japanese, Persian (officially supported)
- License: MIT

Creation strategy:
The basis of the strategy is shown in Pic. 2.
We used Axolotl & Unsloth for SFT-finetuning with PEFT LoRA (rank=64, alpha=64) and Mergekit for SLERP and TIES mergers.

Evolution:
🏆 12th place in the Open LLM Leaderboard ( open-llm-leaderboard/open_llm_leaderboard) (21.02.2025)

Detailed results and comparisons are presented in Pic. 3.

Links:
- Model: https://huggingface.co/fluently-lm/FluentlyLM-Prinum
- GGUF version: mradermacher/FluentlyLM-Prinum-GGUF
- Demo on ZeroGPU: ehristoforu/FluentlyLM-Prinum-demo
  • 7 replies
·
victor 
posted an update 12 months ago
view post
Post
6499
Hey everyone, we've given https://hf.co/spaces page a fresh update!

Smart Search: Now just type what you want to do—like "make a viral meme" or "generate music"—and our search gets it.

New Categories: Check out the cool new filter bar with icons to help you pick a category fast.

Redesigned Space Cards: Reworked a bit to really show off the app descriptions, so you know what each Space does at a glance.

Random Prompt: Need ideas? Hit the dice button for a burst of inspiration.

We’d love to hear what you think—drop us some feedback plz!
·
victor 
posted an update about 1 year ago
view post
Post
3676
Finally, an open-source AI that turns your lyrics into full songs is here—meet YuE! Unlike other tools that only create short clips, YuE can make entire songs (up to 5 minutes) with vocals, melody, and instruments all working together. Letsss go!

m-a-p/YuE-s1-7B-anneal-en-cot
ehristoforu 
posted an update about 1 year ago
view post
Post
4655
✒️ Ultraset - all-in-one dataset for SFT training in Alpaca format.
fluently-sets/ultraset

❓ Ultraset is a comprehensive dataset for training Large Language Models (LLMs) using the SFT (instruction-based Fine-Tuning) method. This dataset consists of over 785 thousand entries in eight languages, including English, Russian, French, Italian, Spanish, German, Chinese, and Korean.

🤯 Ultraset solves the problem faced by users when selecting an appropriate dataset for LLM training. It combines various types of data required to enhance the model's skills in areas such as text writing and editing, mathematics, coding, biology, medicine, finance, and multilingualism.

🤗 For effective use of the dataset, it is recommended to utilize only the "instruction," "input," and "output" columns and train the model for 1-3 epochs. The dataset does not include DPO or Instruct data, making it suitable for training various types of LLM models.

❇️ Ultraset is an excellent tool to improve your language model's skills in diverse knowledge areas.
victor 
posted an update about 1 year ago
victor 
posted an update about 1 year ago
view post
Post
2651
Perfect example of why Qwen/Qwen2.5-Coder-32B-Instruct is insane?

Introducing: AI Video Composer 🔥
huggingface-projects/ai-video-composer

Drag and drop your assets (images/videos/audios) to create any video you want using natural language!

It works by asking the model to output a valid FFMPEG and this can be quite complex but most of the time Qwen2.5-Coder-32B gets it right (that thing is a beast). It's an update of an old project made with GPT4 and it was almost impossible to make it work with open models back then (~1.5 years ago), but not anymore, let's go open weights 🚀.