SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'Horizon Acquisition Corp. Warrant -on Horizon Acqn(HZAC+)期权行权价调整引发热议,机构认为或提振短期流动性',
    '市场关注Horizon Acquisition Corp. Warrant -on Horizon Acqn(HZAC+)期权行权价变动,分析称该调整可能改善短期交易活跃度',
    'HLGN+',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9768, 0.0959],
#         [0.9768, 1.0000, 0.1028],
#         [0.0959, 0.1028, 1.0000]])

Training Details

Training Dataset

Unnamed Dataset

  • Size: 377,615 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 14.38 tokens
    • max: 60 tokens
    • min: 3 tokens
    • mean: 14.38 tokens
    • max: 60 tokens
  • Samples:
    sentence_0 sentence_1
    苍南仪表 苍南自动化仪表
    KINS Technology Group, Inc. Warrant 2020- 2025 on KINS Tech Grp KINZW
    兴业合金(00505.HK)技术面呈现多头排列,短期或延续上涨趋势 00505.HK兴业合金日线图出现买入信号,技术派看好后市走势
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 30
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 30
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss
0.0424 500 0.6966
0.0847 1000 0.4987
0.1271 1500 0.463
0.1695 2000 0.4364
0.2118 2500 0.4041
0.2542 3000 0.3923
0.2966 3500 0.3788
0.3390 4000 0.3603
0.3813 4500 0.3442
0.4237 5000 0.3388
0.4661 5500 0.3252
0.5084 6000 0.3133
0.5508 6500 0.311
0.5932 7000 0.3027
0.6355 7500 0.283
0.6779 8000 0.2847
0.7203 8500 0.279
0.7626 9000 0.2753
0.8050 9500 0.2647
0.8474 10000 0.2687
0.8898 10500 0.2572
0.9321 11000 0.2562
0.9745 11500 0.2351
1.0169 12000 0.2254
1.0592 12500 0.1966
1.1016 13000 0.2082
1.1440 13500 0.1856
1.1863 14000 0.1916
1.2287 14500 0.2003
1.2711 15000 0.1959
1.3134 15500 0.1857
1.3558 16000 0.1854
1.3982 16500 0.1797
1.4406 17000 0.1774
1.4829 17500 0.1813
1.5253 18000 0.1717
1.5677 18500 0.1638
1.6100 19000 0.1658
1.6524 19500 0.1764
1.6948 20000 0.1681
1.7371 20500 0.1589
1.7795 21000 0.1539
1.8219 21500 0.1575
1.8642 22000 0.1558
1.9066 22500 0.158
1.9490 23000 0.1467
1.9914 23500 0.1504
2.0337 24000 0.1221
2.0761 24500 0.1112
2.1185 25000 0.109
2.1608 25500 0.1106
2.2032 26000 0.1131
2.2456 26500 0.1078
2.2879 27000 0.1042
2.3303 27500 0.1024
2.3727 28000 0.1012
2.4150 28500 0.1088
2.4574 29000 0.1022
2.4998 29500 0.1067
2.5422 30000 0.105
2.5845 30500 0.0982
2.6269 31000 0.1033
2.6693 31500 0.1029
2.7116 32000 0.0988
2.7540 32500 0.0999
2.7964 33000 0.094
2.8387 33500 0.0912
2.8811 34000 0.0952
2.9235 34500 0.0953
2.9659 35000 0.0947
3.0082 35500 0.0857
3.0506 36000 0.0697
3.0930 36500 0.067
3.1353 37000 0.063
3.1777 37500 0.0673
3.2201 38000 0.067
3.2624 38500 0.0684
3.3048 39000 0.0643
3.3472 39500 0.0656
3.3895 40000 0.0657
3.4319 40500 0.071
3.4743 41000 0.0671
3.5167 41500 0.0601
3.5590 42000 0.0614
3.6014 42500 0.061
3.6438 43000 0.0599
3.6861 43500 0.0586
3.7285 44000 0.0613
3.7709 44500 0.0604
3.8132 45000 0.06
3.8556 45500 0.0539
3.8980 46000 0.0576
3.9403 46500 0.0605
3.9827 47000 0.0563
4.0251 47500 0.0485
4.0675 48000 0.0409
4.1098 48500 0.0426
4.1522 49000 0.0437
4.1946 49500 0.0422
4.2369 50000 0.0395
4.2793 50500 0.0395
4.3217 51000 0.0425
4.3640 51500 0.0379
4.4064 52000 0.0428
4.4488 52500 0.0412
4.4911 53000 0.0399
4.5335 53500 0.04
4.5759 54000 0.0416
4.6183 54500 0.0351
4.6606 55000 0.037
4.7030 55500 0.0408
4.7454 56000 0.038
4.7877 56500 0.04
4.8301 57000 0.0384
4.8725 57500 0.0372
4.9148 58000 0.0393
4.9572 58500 0.038
4.9996 59000 0.044
5.0419 59500 0.0278
5.0843 60000 0.0257
5.1267 60500 0.0272
5.1691 61000 0.0322
5.2114 61500 0.0234
5.2538 62000 0.029
5.2962 62500 0.0255
5.3385 63000 0.0238
5.3809 63500 0.0287
5.4233 64000 0.0239
5.4656 64500 0.0273
5.5080 65000 0.028
5.5504 65500 0.0283
5.5927 66000 0.027
5.6351 66500 0.0255
5.6775 67000 0.0258
5.7199 67500 0.025
5.7622 68000 0.0251
5.8046 68500 0.0261
5.8470 69000 0.027
5.8893 69500 0.0245
5.9317 70000 0.0266
5.9741 70500 0.0237
6.0164 71000 0.0201
6.0588 71500 0.0166
6.1012 72000 0.0199
6.1435 72500 0.0209
6.1859 73000 0.0189
6.2283 73500 0.0202
6.2707 74000 0.0189
6.3130 74500 0.0157
6.3554 75000 0.0164
6.3978 75500 0.0179
6.4401 76000 0.0186
6.4825 76500 0.0201
6.5249 77000 0.0169
6.5672 77500 0.0201
6.6096 78000 0.0172
6.6520 78500 0.0203
6.6943 79000 0.0181
6.7367 79500 0.0178
6.7791 80000 0.0181
6.8215 80500 0.0181
6.8638 81000 0.0191
6.9062 81500 0.0162
6.9486 82000 0.0189
6.9909 82500 0.0189
7.0333 83000 0.0138
7.0757 83500 0.0152
7.1180 84000 0.0115
7.1604 84500 0.0137
7.2028 85000 0.0126
7.2451 85500 0.0137
7.2875 86000 0.0139
7.3299 86500 0.0145
7.3723 87000 0.0122
7.4146 87500 0.0146
7.4570 88000 0.0142
7.4994 88500 0.0131
7.5417 89000 0.0146
7.5841 89500 0.0137
7.6265 90000 0.0125
7.6688 90500 0.0121
7.7112 91000 0.0134
7.7536 91500 0.014
7.7959 92000 0.0116
7.8383 92500 0.0109
7.8807 93000 0.0128
7.9231 93500 0.0162
7.9654 94000 0.0138
8.0078 94500 0.014
8.0502 95000 0.0104
8.0925 95500 0.0105
8.1349 96000 0.0111
8.1773 96500 0.0099
8.2196 97000 0.0107
8.2620 97500 0.0127
8.3044 98000 0.0104
8.3468 98500 0.0112
8.3891 99000 0.0095
8.4315 99500 0.0099
8.4739 100000 0.0091
8.5162 100500 0.0096
8.5586 101000 0.0116
8.6010 101500 0.0106
8.6433 102000 0.01
8.6857 102500 0.0104
8.7281 103000 0.009
8.7704 103500 0.0089
8.8128 104000 0.0099
8.8552 104500 0.0117
8.8976 105000 0.01
8.9399 105500 0.0112
8.9823 106000 0.0103
9.0247 106500 0.0079
9.0670 107000 0.0083
9.1094 107500 0.0086
9.1518 108000 0.0084
9.1941 108500 0.0097
9.2365 109000 0.0081
9.2789 109500 0.009
9.3212 110000 0.0084
9.3636 110500 0.0072
9.4060 111000 0.0107
9.4484 111500 0.0082
9.4907 112000 0.0098
9.5331 112500 0.0089
9.5755 113000 0.0104
9.6178 113500 0.0083
9.6602 114000 0.0081
9.7026 114500 0.0087
9.7449 115000 0.0072
9.7873 115500 0.0086
9.8297 116000 0.0096
9.8720 116500 0.0087
9.9144 117000 0.0079
9.9568 117500 0.0087
9.9992 118000 0.008
10.0415 118500 0.0073
10.0839 119000 0.0058
10.1263 119500 0.0076
10.1686 120000 0.0055
10.2110 120500 0.0072
10.2534 121000 0.007
10.2957 121500 0.0075
10.3381 122000 0.0067
10.3805 122500 0.0076
10.4228 123000 0.0078
10.4652 123500 0.0073
10.5076 124000 0.0076
10.5500 124500 0.0071
10.5923 125000 0.0068
10.6347 125500 0.0062
10.6771 126000 0.0071
10.7194 126500 0.0065
10.7618 127000 0.0063
10.8042 127500 0.006
10.8465 128000 0.0055
10.8889 128500 0.0073
10.9313 129000 0.0068
10.9736 129500 0.0079
11.0160 130000 0.0056
11.0584 130500 0.0045
11.1008 131000 0.0058
11.1431 131500 0.0055
11.1855 132000 0.0062
11.2279 132500 0.0066
11.2702 133000 0.0052
11.3126 133500 0.0063
11.3550 134000 0.0059
11.3973 134500 0.0058
11.4397 135000 0.0046
11.4821 135500 0.006
11.5244 136000 0.0046
11.5668 136500 0.0059
11.6092 137000 0.0072
11.6516 137500 0.0062
11.6939 138000 0.0055
11.7363 138500 0.0055
11.7787 139000 0.0069
11.8210 139500 0.0073
11.8634 140000 0.0063
11.9058 140500 0.0067
11.9481 141000 0.0061
11.9905 141500 0.005
12.0329 142000 0.0054
12.0752 142500 0.0063
12.1176 143000 0.0046
12.1600 143500 0.0054
12.2024 144000 0.0041
12.2447 144500 0.0055
12.2871 145000 0.0052
12.3295 145500 0.0046
12.3718 146000 0.0046
12.4142 146500 0.0058
12.4566 147000 0.005
12.4989 147500 0.0049
12.5413 148000 0.0053
12.5837 148500 0.0042
12.6260 149000 0.0046
12.6684 149500 0.0049
12.7108 150000 0.0042
12.7532 150500 0.0046
12.7955 151000 0.004
12.8379 151500 0.0052
12.8803 152000 0.0045
12.9226 152500 0.0048
12.9650 153000 0.0065
13.0074 153500 0.0039
13.0497 154000 0.0043
13.0921 154500 0.0039
13.1345 155000 0.0037
13.1768 155500 0.0058
13.2192 156000 0.0038
13.2616 156500 0.004
13.3040 157000 0.0044
13.3463 157500 0.0047
13.3887 158000 0.0042
13.4311 158500 0.0034
13.4734 159000 0.0056
13.5158 159500 0.0041
13.5582 160000 0.004
13.6005 160500 0.0052
13.6429 161000 0.0043
13.6853 161500 0.0039
13.7277 162000 0.0055
13.7700 162500 0.0046
13.8124 163000 0.0058
13.8548 163500 0.0037
13.8971 164000 0.0047
13.9395 164500 0.0049
13.9819 165000 0.0047
14.0242 165500 0.0042
14.0666 166000 0.0035
14.1090 166500 0.0043
14.1513 167000 0.0034
14.1937 167500 0.0032
14.2361 168000 0.0044
14.2785 168500 0.004
14.3208 169000 0.003
14.3632 169500 0.005
14.4056 170000 0.003
14.4479 170500 0.0041
14.4903 171000 0.0031
14.5327 171500 0.0033
14.5750 172000 0.0036
14.6174 172500 0.0038
14.6598 173000 0.0034
14.7021 173500 0.0034
14.7445 174000 0.0035
14.7869 174500 0.004
14.8293 175000 0.0042
14.8716 175500 0.0032
14.9140 176000 0.0029
14.9564 176500 0.004
14.9987 177000 0.0043
15.0411 177500 0.0033
15.0835 178000 0.003
15.1258 178500 0.0036
15.1682 179000 0.0035
15.2106 179500 0.0029
15.2529 180000 0.0028
15.2953 180500 0.0034
15.3377 181000 0.0024
15.3801 181500 0.0026
15.4224 182000 0.0032
15.4648 182500 0.0031
15.5072 183000 0.0038
15.5495 183500 0.0032
15.5919 184000 0.0029
15.6343 184500 0.003
15.6766 185000 0.0039
15.7190 185500 0.0034
15.7614 186000 0.0034
15.8037 186500 0.004
15.8461 187000 0.0029
15.8885 187500 0.0031
15.9309 188000 0.0025
15.9732 188500 0.0023
16.0156 189000 0.0025
16.0580 189500 0.0026
16.1003 190000 0.0028
16.1427 190500 0.003
16.1851 191000 0.0033
16.2274 191500 0.0022
16.2698 192000 0.0034
16.3122 192500 0.0029
16.3545 193000 0.0029
16.3969 193500 0.003
16.4393 194000 0.0029
16.4817 194500 0.0028
16.5240 195000 0.0026
16.5664 195500 0.003
16.6088 196000 0.0025
16.6511 196500 0.0023
16.6935 197000 0.0026
16.7359 197500 0.0031
16.7782 198000 0.0032
16.8206 198500 0.002
16.8630 199000 0.0022
16.9053 199500 0.0023
16.9477 200000 0.0027
16.9901 200500 0.0032
17.0325 201000 0.0026
17.0748 201500 0.0021
17.1172 202000 0.0028
17.1596 202500 0.0029
17.2019 203000 0.0021
17.2443 203500 0.0027
17.2867 204000 0.0023
17.3290 204500 0.0027
17.3714 205000 0.0029
17.4138 205500 0.0022
17.4561 206000 0.0026
17.4985 206500 0.0023
17.5409 207000 0.0025
17.5833 207500 0.0021
17.6256 208000 0.0022
17.6680 208500 0.0033
17.7104 209000 0.0027
17.7527 209500 0.0023
17.7951 210000 0.0026
17.8375 210500 0.0024
17.8798 211000 0.0023
17.9222 211500 0.0027
17.9646 212000 0.0037
18.0069 212500 0.0026
18.0493 213000 0.0024
18.0917 213500 0.0021
18.1341 214000 0.0022
18.1764 214500 0.0023
18.2188 215000 0.003
18.2612 215500 0.0018
18.3035 216000 0.0024
18.3459 216500 0.0031
18.3883 217000 0.0025
18.4306 217500 0.0035
18.4730 218000 0.0028
18.5154 218500 0.0027
18.5577 219000 0.002
18.6001 219500 0.0022
18.6425 220000 0.0022
18.6849 220500 0.002
18.7272 221000 0.0021
18.7696 221500 0.003
18.8120 222000 0.0023
18.8543 222500 0.0021
18.8967 223000 0.0026
18.9391 223500 0.0025
18.9814 224000 0.0031
19.0238 224500 0.0019
19.0662 225000 0.0021
19.1086 225500 0.0018
19.1509 226000 0.0019
19.1933 226500 0.0022
19.2357 227000 0.0023
19.2780 227500 0.0026
19.3204 228000 0.0029
19.3628 228500 0.0022
19.4051 229000 0.0022
19.4475 229500 0.0019
19.4899 230000 0.0019
19.5322 230500 0.0021
19.5746 231000 0.0017
19.6170 231500 0.0023
19.6594 232000 0.002
19.7017 232500 0.0023
19.7441 233000 0.0023
19.7865 233500 0.0016
19.8288 234000 0.0022
19.8712 234500 0.0018
19.9136 235000 0.002
19.9559 235500 0.0022
19.9983 236000 0.002
20.0407 236500 0.0025
20.0830 237000 0.0015
20.1254 237500 0.0017
20.1678 238000 0.0019
20.2102 238500 0.0019
20.2525 239000 0.0019
20.2949 239500 0.0023
20.3373 240000 0.002
20.3796 240500 0.0013
20.4220 241000 0.0016
20.4644 241500 0.0026
20.5067 242000 0.0025
20.5491 242500 0.0014
20.5915 243000 0.0022
20.6338 243500 0.002
20.6762 244000 0.002
20.7186 244500 0.0015
20.7610 245000 0.0014
20.8033 245500 0.0019
20.8457 246000 0.0032
20.8881 246500 0.0017
20.9304 247000 0.0023
20.9728 247500 0.0015
21.0152 248000 0.0012
21.0575 248500 0.002
21.0999 249000 0.0024
21.1423 249500 0.0015
21.1846 250000 0.0014
21.2270 250500 0.0015
21.2694 251000 0.0016
21.3118 251500 0.0014
21.3541 252000 0.0014
21.3965 252500 0.0019
21.4389 253000 0.002
21.4812 253500 0.003
21.5236 254000 0.0017
21.5660 254500 0.0018
21.6083 255000 0.0021
21.6507 255500 0.0013
21.6931 256000 0.0019
21.7354 256500 0.0015
21.7778 257000 0.0018
21.8202 257500 0.0013
21.8626 258000 0.0021
21.9049 258500 0.0013
21.9473 259000 0.0013
21.9897 259500 0.0013
22.0320 260000 0.0012
22.0744 260500 0.0011
22.1168 261000 0.0013
22.1591 261500 0.0012
22.2015 262000 0.0016
22.2439 262500 0.0017
22.2862 263000 0.0011
22.3286 263500 0.0015
22.3710 264000 0.0013
22.4134 264500 0.0018
22.4557 265000 0.0014
22.4981 265500 0.0012
22.5405 266000 0.0017
22.5828 266500 0.0022
22.6252 267000 0.0015
22.6676 267500 0.0015
22.7099 268000 0.002
22.7523 268500 0.0017
22.7947 269000 0.0021
22.8370 269500 0.0012
22.8794 270000 0.0018
22.9218 270500 0.0014
22.9642 271000 0.0014
23.0065 271500 0.0015
23.0489 272000 0.0016
23.0913 272500 0.0013
23.1336 273000 0.002
23.1760 273500 0.0016
23.2184 274000 0.0021
23.2607 274500 0.0016
23.3031 275000 0.0016
23.3455 275500 0.0012
23.3878 276000 0.0012
23.4302 276500 0.0016
23.4726 277000 0.0017
23.5150 277500 0.0013
23.5573 278000 0.0015
23.5997 278500 0.0019
23.6421 279000 0.0014
23.6844 279500 0.0019
23.7268 280000 0.0012
23.7692 280500 0.002
23.8115 281000 0.0017
23.8539 281500 0.0011
23.8963 282000 0.0013
23.9386 282500 0.0014
23.9810 283000 0.0017
24.0234 283500 0.0015
24.0658 284000 0.0017
24.1081 284500 0.0011
24.1505 285000 0.0016
24.1929 285500 0.0014
24.2352 286000 0.0009
24.2776 286500 0.0017
24.3200 287000 0.0011
24.3623 287500 0.0018
24.4047 288000 0.0018
24.4471 288500 0.0015
24.4895 289000 0.0013
24.5318 289500 0.0013
24.5742 290000 0.0015
24.6166 290500 0.0012
24.6589 291000 0.0014
24.7013 291500 0.0021
24.7437 292000 0.0018
24.7860 292500 0.0016
24.8284 293000 0.0014
24.8708 293500 0.0012
24.9131 294000 0.0015
24.9555 294500 0.001
24.9979 295000 0.0014
25.0403 295500 0.0014
25.0826 296000 0.001
25.1250 296500 0.0018
25.1674 297000 0.0014
25.2097 297500 0.0011
25.2521 298000 0.0013
25.2945 298500 0.002
25.3368 299000 0.0006
25.3792 299500 0.0011
25.4216 300000 0.0016
25.4639 300500 0.0011
25.5063 301000 0.0016
25.5487 301500 0.0009
25.5911 302000 0.0009
25.6334 302500 0.0017
25.6758 303000 0.0017
25.7182 303500 0.0018
25.7605 304000 0.001
25.8029 304500 0.0011
25.8453 305000 0.0015
25.8876 305500 0.0018
25.9300 306000 0.0009
25.9724 306500 0.0011
26.0147 307000 0.0013
26.0571 307500 0.0015
26.0995 308000 0.0007
26.1419 308500 0.001
26.1842 309000 0.0011
26.2266 309500 0.0013
26.2690 310000 0.0012
26.3113 310500 0.0008
26.3537 311000 0.0017
26.3961 311500 0.0012
26.4384 312000 0.0018
26.4808 312500 0.0015
26.5232 313000 0.0012
26.5655 313500 0.0011
26.6079 314000 0.0008
26.6503 314500 0.0012
26.6927 315000 0.0009
26.7350 315500 0.0011
26.7774 316000 0.0012
26.8198 316500 0.0015
26.8621 317000 0.0016
26.9045 317500 0.0015
26.9469 318000 0.0018
26.9892 318500 0.0013
27.0316 319000 0.0019
27.0740 319500 0.0015
27.1163 320000 0.001
27.1587 320500 0.0009
27.2011 321000 0.0007
27.2435 321500 0.0012
27.2858 322000 0.0012
27.3282 322500 0.0011
27.3706 323000 0.0025
27.4129 323500 0.0009
27.4553 324000 0.0015
27.4977 324500 0.0012
27.5400 325000 0.0013
27.5824 325500 0.0013
27.6248 326000 0.0015
27.6671 326500 0.0011
27.7095 327000 0.0022
27.7519 327500 0.001
27.7943 328000 0.0009
27.8366 328500 0.001
27.8790 329000 0.0007
27.9214 329500 0.0013
27.9637 330000 0.0017
28.0061 330500 0.0006
28.0485 331000 0.0011
28.0908 331500 0.0011
28.1332 332000 0.001
28.1756 332500 0.0013
28.2179 333000 0.0012
28.2603 333500 0.001
28.3027 334000 0.001
28.3451 334500 0.0013
28.3874 335000 0.0012
28.4298 335500 0.0015
28.4722 336000 0.0016
28.5145 336500 0.0013
28.5569 337000 0.0011
28.5993 337500 0.0011
28.6416 338000 0.0015
28.6840 338500 0.0014
28.7264 339000 0.0007
28.7687 339500 0.0013
28.8111 340000 0.001
28.8535 340500 0.0009
28.8959 341000 0.0009
28.9382 341500 0.0012
28.9806 342000 0.0011
29.0230 342500 0.0008
29.0653 343000 0.0009
29.1077 343500 0.0009
29.1501 344000 0.0013
29.1924 344500 0.0011
29.2348 345000 0.0009
29.2772 345500 0.0012
29.3195 346000 0.0009
29.3619 346500 0.0008
29.4043 347000 0.0006
29.4467 347500 0.001
29.4890 348000 0.0012
29.5314 348500 0.0013
29.5738 349000 0.001
29.6161 349500 0.0013
29.6585 350000 0.0017
29.7009 350500 0.0009
29.7432 351000 0.0009
29.7856 351500 0.001
29.8280 352000 0.0011
29.8703 352500 0.0008
29.9127 353000 0.0011
29.9551 353500 0.0005
29.9975 354000 0.0017

Framework Versions

  • Python: 3.12.3
  • Sentence Transformers: 5.1.0
  • Transformers: 4.54.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.10.0
  • Datasets: 4.0.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
7
Safetensors
Model size
0.6B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support