SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'XLMRobertaModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Horizon Acquisition Corp. Warrant -on Horizon Acqn(HZAC+)期权行权价调整引发热议,机构认为或提振短期流动性',
'市场关注Horizon Acquisition Corp. Warrant -on Horizon Acqn(HZAC+)期权行权价变动,分析称该调整可能改善短期交易活跃度',
'HLGN+',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9768, 0.0959],
# [0.9768, 1.0000, 0.1028],
# [0.0959, 0.1028, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 377,615 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 3 tokens
- mean: 14.38 tokens
- max: 60 tokens
- min: 3 tokens
- mean: 14.38 tokens
- max: 60 tokens
- Samples:
sentence_0 sentence_1 苍南仪表苍南自动化仪表KINS Technology Group, Inc. Warrant 2020- 2025 on KINS Tech GrpKINZW兴业合金(00505.HK)技术面呈现多头排列,短期或延续上涨趋势00505.HK兴业合金日线图出现买入信号,技术派看好后市走势 - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 30fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 30max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0424 | 500 | 0.6966 |
| 0.0847 | 1000 | 0.4987 |
| 0.1271 | 1500 | 0.463 |
| 0.1695 | 2000 | 0.4364 |
| 0.2118 | 2500 | 0.4041 |
| 0.2542 | 3000 | 0.3923 |
| 0.2966 | 3500 | 0.3788 |
| 0.3390 | 4000 | 0.3603 |
| 0.3813 | 4500 | 0.3442 |
| 0.4237 | 5000 | 0.3388 |
| 0.4661 | 5500 | 0.3252 |
| 0.5084 | 6000 | 0.3133 |
| 0.5508 | 6500 | 0.311 |
| 0.5932 | 7000 | 0.3027 |
| 0.6355 | 7500 | 0.283 |
| 0.6779 | 8000 | 0.2847 |
| 0.7203 | 8500 | 0.279 |
| 0.7626 | 9000 | 0.2753 |
| 0.8050 | 9500 | 0.2647 |
| 0.8474 | 10000 | 0.2687 |
| 0.8898 | 10500 | 0.2572 |
| 0.9321 | 11000 | 0.2562 |
| 0.9745 | 11500 | 0.2351 |
| 1.0169 | 12000 | 0.2254 |
| 1.0592 | 12500 | 0.1966 |
| 1.1016 | 13000 | 0.2082 |
| 1.1440 | 13500 | 0.1856 |
| 1.1863 | 14000 | 0.1916 |
| 1.2287 | 14500 | 0.2003 |
| 1.2711 | 15000 | 0.1959 |
| 1.3134 | 15500 | 0.1857 |
| 1.3558 | 16000 | 0.1854 |
| 1.3982 | 16500 | 0.1797 |
| 1.4406 | 17000 | 0.1774 |
| 1.4829 | 17500 | 0.1813 |
| 1.5253 | 18000 | 0.1717 |
| 1.5677 | 18500 | 0.1638 |
| 1.6100 | 19000 | 0.1658 |
| 1.6524 | 19500 | 0.1764 |
| 1.6948 | 20000 | 0.1681 |
| 1.7371 | 20500 | 0.1589 |
| 1.7795 | 21000 | 0.1539 |
| 1.8219 | 21500 | 0.1575 |
| 1.8642 | 22000 | 0.1558 |
| 1.9066 | 22500 | 0.158 |
| 1.9490 | 23000 | 0.1467 |
| 1.9914 | 23500 | 0.1504 |
| 2.0337 | 24000 | 0.1221 |
| 2.0761 | 24500 | 0.1112 |
| 2.1185 | 25000 | 0.109 |
| 2.1608 | 25500 | 0.1106 |
| 2.2032 | 26000 | 0.1131 |
| 2.2456 | 26500 | 0.1078 |
| 2.2879 | 27000 | 0.1042 |
| 2.3303 | 27500 | 0.1024 |
| 2.3727 | 28000 | 0.1012 |
| 2.4150 | 28500 | 0.1088 |
| 2.4574 | 29000 | 0.1022 |
| 2.4998 | 29500 | 0.1067 |
| 2.5422 | 30000 | 0.105 |
| 2.5845 | 30500 | 0.0982 |
| 2.6269 | 31000 | 0.1033 |
| 2.6693 | 31500 | 0.1029 |
| 2.7116 | 32000 | 0.0988 |
| 2.7540 | 32500 | 0.0999 |
| 2.7964 | 33000 | 0.094 |
| 2.8387 | 33500 | 0.0912 |
| 2.8811 | 34000 | 0.0952 |
| 2.9235 | 34500 | 0.0953 |
| 2.9659 | 35000 | 0.0947 |
| 3.0082 | 35500 | 0.0857 |
| 3.0506 | 36000 | 0.0697 |
| 3.0930 | 36500 | 0.067 |
| 3.1353 | 37000 | 0.063 |
| 3.1777 | 37500 | 0.0673 |
| 3.2201 | 38000 | 0.067 |
| 3.2624 | 38500 | 0.0684 |
| 3.3048 | 39000 | 0.0643 |
| 3.3472 | 39500 | 0.0656 |
| 3.3895 | 40000 | 0.0657 |
| 3.4319 | 40500 | 0.071 |
| 3.4743 | 41000 | 0.0671 |
| 3.5167 | 41500 | 0.0601 |
| 3.5590 | 42000 | 0.0614 |
| 3.6014 | 42500 | 0.061 |
| 3.6438 | 43000 | 0.0599 |
| 3.6861 | 43500 | 0.0586 |
| 3.7285 | 44000 | 0.0613 |
| 3.7709 | 44500 | 0.0604 |
| 3.8132 | 45000 | 0.06 |
| 3.8556 | 45500 | 0.0539 |
| 3.8980 | 46000 | 0.0576 |
| 3.9403 | 46500 | 0.0605 |
| 3.9827 | 47000 | 0.0563 |
| 4.0251 | 47500 | 0.0485 |
| 4.0675 | 48000 | 0.0409 |
| 4.1098 | 48500 | 0.0426 |
| 4.1522 | 49000 | 0.0437 |
| 4.1946 | 49500 | 0.0422 |
| 4.2369 | 50000 | 0.0395 |
| 4.2793 | 50500 | 0.0395 |
| 4.3217 | 51000 | 0.0425 |
| 4.3640 | 51500 | 0.0379 |
| 4.4064 | 52000 | 0.0428 |
| 4.4488 | 52500 | 0.0412 |
| 4.4911 | 53000 | 0.0399 |
| 4.5335 | 53500 | 0.04 |
| 4.5759 | 54000 | 0.0416 |
| 4.6183 | 54500 | 0.0351 |
| 4.6606 | 55000 | 0.037 |
| 4.7030 | 55500 | 0.0408 |
| 4.7454 | 56000 | 0.038 |
| 4.7877 | 56500 | 0.04 |
| 4.8301 | 57000 | 0.0384 |
| 4.8725 | 57500 | 0.0372 |
| 4.9148 | 58000 | 0.0393 |
| 4.9572 | 58500 | 0.038 |
| 4.9996 | 59000 | 0.044 |
| 5.0419 | 59500 | 0.0278 |
| 5.0843 | 60000 | 0.0257 |
| 5.1267 | 60500 | 0.0272 |
| 5.1691 | 61000 | 0.0322 |
| 5.2114 | 61500 | 0.0234 |
| 5.2538 | 62000 | 0.029 |
| 5.2962 | 62500 | 0.0255 |
| 5.3385 | 63000 | 0.0238 |
| 5.3809 | 63500 | 0.0287 |
| 5.4233 | 64000 | 0.0239 |
| 5.4656 | 64500 | 0.0273 |
| 5.5080 | 65000 | 0.028 |
| 5.5504 | 65500 | 0.0283 |
| 5.5927 | 66000 | 0.027 |
| 5.6351 | 66500 | 0.0255 |
| 5.6775 | 67000 | 0.0258 |
| 5.7199 | 67500 | 0.025 |
| 5.7622 | 68000 | 0.0251 |
| 5.8046 | 68500 | 0.0261 |
| 5.8470 | 69000 | 0.027 |
| 5.8893 | 69500 | 0.0245 |
| 5.9317 | 70000 | 0.0266 |
| 5.9741 | 70500 | 0.0237 |
| 6.0164 | 71000 | 0.0201 |
| 6.0588 | 71500 | 0.0166 |
| 6.1012 | 72000 | 0.0199 |
| 6.1435 | 72500 | 0.0209 |
| 6.1859 | 73000 | 0.0189 |
| 6.2283 | 73500 | 0.0202 |
| 6.2707 | 74000 | 0.0189 |
| 6.3130 | 74500 | 0.0157 |
| 6.3554 | 75000 | 0.0164 |
| 6.3978 | 75500 | 0.0179 |
| 6.4401 | 76000 | 0.0186 |
| 6.4825 | 76500 | 0.0201 |
| 6.5249 | 77000 | 0.0169 |
| 6.5672 | 77500 | 0.0201 |
| 6.6096 | 78000 | 0.0172 |
| 6.6520 | 78500 | 0.0203 |
| 6.6943 | 79000 | 0.0181 |
| 6.7367 | 79500 | 0.0178 |
| 6.7791 | 80000 | 0.0181 |
| 6.8215 | 80500 | 0.0181 |
| 6.8638 | 81000 | 0.0191 |
| 6.9062 | 81500 | 0.0162 |
| 6.9486 | 82000 | 0.0189 |
| 6.9909 | 82500 | 0.0189 |
| 7.0333 | 83000 | 0.0138 |
| 7.0757 | 83500 | 0.0152 |
| 7.1180 | 84000 | 0.0115 |
| 7.1604 | 84500 | 0.0137 |
| 7.2028 | 85000 | 0.0126 |
| 7.2451 | 85500 | 0.0137 |
| 7.2875 | 86000 | 0.0139 |
| 7.3299 | 86500 | 0.0145 |
| 7.3723 | 87000 | 0.0122 |
| 7.4146 | 87500 | 0.0146 |
| 7.4570 | 88000 | 0.0142 |
| 7.4994 | 88500 | 0.0131 |
| 7.5417 | 89000 | 0.0146 |
| 7.5841 | 89500 | 0.0137 |
| 7.6265 | 90000 | 0.0125 |
| 7.6688 | 90500 | 0.0121 |
| 7.7112 | 91000 | 0.0134 |
| 7.7536 | 91500 | 0.014 |
| 7.7959 | 92000 | 0.0116 |
| 7.8383 | 92500 | 0.0109 |
| 7.8807 | 93000 | 0.0128 |
| 7.9231 | 93500 | 0.0162 |
| 7.9654 | 94000 | 0.0138 |
| 8.0078 | 94500 | 0.014 |
| 8.0502 | 95000 | 0.0104 |
| 8.0925 | 95500 | 0.0105 |
| 8.1349 | 96000 | 0.0111 |
| 8.1773 | 96500 | 0.0099 |
| 8.2196 | 97000 | 0.0107 |
| 8.2620 | 97500 | 0.0127 |
| 8.3044 | 98000 | 0.0104 |
| 8.3468 | 98500 | 0.0112 |
| 8.3891 | 99000 | 0.0095 |
| 8.4315 | 99500 | 0.0099 |
| 8.4739 | 100000 | 0.0091 |
| 8.5162 | 100500 | 0.0096 |
| 8.5586 | 101000 | 0.0116 |
| 8.6010 | 101500 | 0.0106 |
| 8.6433 | 102000 | 0.01 |
| 8.6857 | 102500 | 0.0104 |
| 8.7281 | 103000 | 0.009 |
| 8.7704 | 103500 | 0.0089 |
| 8.8128 | 104000 | 0.0099 |
| 8.8552 | 104500 | 0.0117 |
| 8.8976 | 105000 | 0.01 |
| 8.9399 | 105500 | 0.0112 |
| 8.9823 | 106000 | 0.0103 |
| 9.0247 | 106500 | 0.0079 |
| 9.0670 | 107000 | 0.0083 |
| 9.1094 | 107500 | 0.0086 |
| 9.1518 | 108000 | 0.0084 |
| 9.1941 | 108500 | 0.0097 |
| 9.2365 | 109000 | 0.0081 |
| 9.2789 | 109500 | 0.009 |
| 9.3212 | 110000 | 0.0084 |
| 9.3636 | 110500 | 0.0072 |
| 9.4060 | 111000 | 0.0107 |
| 9.4484 | 111500 | 0.0082 |
| 9.4907 | 112000 | 0.0098 |
| 9.5331 | 112500 | 0.0089 |
| 9.5755 | 113000 | 0.0104 |
| 9.6178 | 113500 | 0.0083 |
| 9.6602 | 114000 | 0.0081 |
| 9.7026 | 114500 | 0.0087 |
| 9.7449 | 115000 | 0.0072 |
| 9.7873 | 115500 | 0.0086 |
| 9.8297 | 116000 | 0.0096 |
| 9.8720 | 116500 | 0.0087 |
| 9.9144 | 117000 | 0.0079 |
| 9.9568 | 117500 | 0.0087 |
| 9.9992 | 118000 | 0.008 |
| 10.0415 | 118500 | 0.0073 |
| 10.0839 | 119000 | 0.0058 |
| 10.1263 | 119500 | 0.0076 |
| 10.1686 | 120000 | 0.0055 |
| 10.2110 | 120500 | 0.0072 |
| 10.2534 | 121000 | 0.007 |
| 10.2957 | 121500 | 0.0075 |
| 10.3381 | 122000 | 0.0067 |
| 10.3805 | 122500 | 0.0076 |
| 10.4228 | 123000 | 0.0078 |
| 10.4652 | 123500 | 0.0073 |
| 10.5076 | 124000 | 0.0076 |
| 10.5500 | 124500 | 0.0071 |
| 10.5923 | 125000 | 0.0068 |
| 10.6347 | 125500 | 0.0062 |
| 10.6771 | 126000 | 0.0071 |
| 10.7194 | 126500 | 0.0065 |
| 10.7618 | 127000 | 0.0063 |
| 10.8042 | 127500 | 0.006 |
| 10.8465 | 128000 | 0.0055 |
| 10.8889 | 128500 | 0.0073 |
| 10.9313 | 129000 | 0.0068 |
| 10.9736 | 129500 | 0.0079 |
| 11.0160 | 130000 | 0.0056 |
| 11.0584 | 130500 | 0.0045 |
| 11.1008 | 131000 | 0.0058 |
| 11.1431 | 131500 | 0.0055 |
| 11.1855 | 132000 | 0.0062 |
| 11.2279 | 132500 | 0.0066 |
| 11.2702 | 133000 | 0.0052 |
| 11.3126 | 133500 | 0.0063 |
| 11.3550 | 134000 | 0.0059 |
| 11.3973 | 134500 | 0.0058 |
| 11.4397 | 135000 | 0.0046 |
| 11.4821 | 135500 | 0.006 |
| 11.5244 | 136000 | 0.0046 |
| 11.5668 | 136500 | 0.0059 |
| 11.6092 | 137000 | 0.0072 |
| 11.6516 | 137500 | 0.0062 |
| 11.6939 | 138000 | 0.0055 |
| 11.7363 | 138500 | 0.0055 |
| 11.7787 | 139000 | 0.0069 |
| 11.8210 | 139500 | 0.0073 |
| 11.8634 | 140000 | 0.0063 |
| 11.9058 | 140500 | 0.0067 |
| 11.9481 | 141000 | 0.0061 |
| 11.9905 | 141500 | 0.005 |
| 12.0329 | 142000 | 0.0054 |
| 12.0752 | 142500 | 0.0063 |
| 12.1176 | 143000 | 0.0046 |
| 12.1600 | 143500 | 0.0054 |
| 12.2024 | 144000 | 0.0041 |
| 12.2447 | 144500 | 0.0055 |
| 12.2871 | 145000 | 0.0052 |
| 12.3295 | 145500 | 0.0046 |
| 12.3718 | 146000 | 0.0046 |
| 12.4142 | 146500 | 0.0058 |
| 12.4566 | 147000 | 0.005 |
| 12.4989 | 147500 | 0.0049 |
| 12.5413 | 148000 | 0.0053 |
| 12.5837 | 148500 | 0.0042 |
| 12.6260 | 149000 | 0.0046 |
| 12.6684 | 149500 | 0.0049 |
| 12.7108 | 150000 | 0.0042 |
| 12.7532 | 150500 | 0.0046 |
| 12.7955 | 151000 | 0.004 |
| 12.8379 | 151500 | 0.0052 |
| 12.8803 | 152000 | 0.0045 |
| 12.9226 | 152500 | 0.0048 |
| 12.9650 | 153000 | 0.0065 |
| 13.0074 | 153500 | 0.0039 |
| 13.0497 | 154000 | 0.0043 |
| 13.0921 | 154500 | 0.0039 |
| 13.1345 | 155000 | 0.0037 |
| 13.1768 | 155500 | 0.0058 |
| 13.2192 | 156000 | 0.0038 |
| 13.2616 | 156500 | 0.004 |
| 13.3040 | 157000 | 0.0044 |
| 13.3463 | 157500 | 0.0047 |
| 13.3887 | 158000 | 0.0042 |
| 13.4311 | 158500 | 0.0034 |
| 13.4734 | 159000 | 0.0056 |
| 13.5158 | 159500 | 0.0041 |
| 13.5582 | 160000 | 0.004 |
| 13.6005 | 160500 | 0.0052 |
| 13.6429 | 161000 | 0.0043 |
| 13.6853 | 161500 | 0.0039 |
| 13.7277 | 162000 | 0.0055 |
| 13.7700 | 162500 | 0.0046 |
| 13.8124 | 163000 | 0.0058 |
| 13.8548 | 163500 | 0.0037 |
| 13.8971 | 164000 | 0.0047 |
| 13.9395 | 164500 | 0.0049 |
| 13.9819 | 165000 | 0.0047 |
| 14.0242 | 165500 | 0.0042 |
| 14.0666 | 166000 | 0.0035 |
| 14.1090 | 166500 | 0.0043 |
| 14.1513 | 167000 | 0.0034 |
| 14.1937 | 167500 | 0.0032 |
| 14.2361 | 168000 | 0.0044 |
| 14.2785 | 168500 | 0.004 |
| 14.3208 | 169000 | 0.003 |
| 14.3632 | 169500 | 0.005 |
| 14.4056 | 170000 | 0.003 |
| 14.4479 | 170500 | 0.0041 |
| 14.4903 | 171000 | 0.0031 |
| 14.5327 | 171500 | 0.0033 |
| 14.5750 | 172000 | 0.0036 |
| 14.6174 | 172500 | 0.0038 |
| 14.6598 | 173000 | 0.0034 |
| 14.7021 | 173500 | 0.0034 |
| 14.7445 | 174000 | 0.0035 |
| 14.7869 | 174500 | 0.004 |
| 14.8293 | 175000 | 0.0042 |
| 14.8716 | 175500 | 0.0032 |
| 14.9140 | 176000 | 0.0029 |
| 14.9564 | 176500 | 0.004 |
| 14.9987 | 177000 | 0.0043 |
| 15.0411 | 177500 | 0.0033 |
| 15.0835 | 178000 | 0.003 |
| 15.1258 | 178500 | 0.0036 |
| 15.1682 | 179000 | 0.0035 |
| 15.2106 | 179500 | 0.0029 |
| 15.2529 | 180000 | 0.0028 |
| 15.2953 | 180500 | 0.0034 |
| 15.3377 | 181000 | 0.0024 |
| 15.3801 | 181500 | 0.0026 |
| 15.4224 | 182000 | 0.0032 |
| 15.4648 | 182500 | 0.0031 |
| 15.5072 | 183000 | 0.0038 |
| 15.5495 | 183500 | 0.0032 |
| 15.5919 | 184000 | 0.0029 |
| 15.6343 | 184500 | 0.003 |
| 15.6766 | 185000 | 0.0039 |
| 15.7190 | 185500 | 0.0034 |
| 15.7614 | 186000 | 0.0034 |
| 15.8037 | 186500 | 0.004 |
| 15.8461 | 187000 | 0.0029 |
| 15.8885 | 187500 | 0.0031 |
| 15.9309 | 188000 | 0.0025 |
| 15.9732 | 188500 | 0.0023 |
| 16.0156 | 189000 | 0.0025 |
| 16.0580 | 189500 | 0.0026 |
| 16.1003 | 190000 | 0.0028 |
| 16.1427 | 190500 | 0.003 |
| 16.1851 | 191000 | 0.0033 |
| 16.2274 | 191500 | 0.0022 |
| 16.2698 | 192000 | 0.0034 |
| 16.3122 | 192500 | 0.0029 |
| 16.3545 | 193000 | 0.0029 |
| 16.3969 | 193500 | 0.003 |
| 16.4393 | 194000 | 0.0029 |
| 16.4817 | 194500 | 0.0028 |
| 16.5240 | 195000 | 0.0026 |
| 16.5664 | 195500 | 0.003 |
| 16.6088 | 196000 | 0.0025 |
| 16.6511 | 196500 | 0.0023 |
| 16.6935 | 197000 | 0.0026 |
| 16.7359 | 197500 | 0.0031 |
| 16.7782 | 198000 | 0.0032 |
| 16.8206 | 198500 | 0.002 |
| 16.8630 | 199000 | 0.0022 |
| 16.9053 | 199500 | 0.0023 |
| 16.9477 | 200000 | 0.0027 |
| 16.9901 | 200500 | 0.0032 |
| 17.0325 | 201000 | 0.0026 |
| 17.0748 | 201500 | 0.0021 |
| 17.1172 | 202000 | 0.0028 |
| 17.1596 | 202500 | 0.0029 |
| 17.2019 | 203000 | 0.0021 |
| 17.2443 | 203500 | 0.0027 |
| 17.2867 | 204000 | 0.0023 |
| 17.3290 | 204500 | 0.0027 |
| 17.3714 | 205000 | 0.0029 |
| 17.4138 | 205500 | 0.0022 |
| 17.4561 | 206000 | 0.0026 |
| 17.4985 | 206500 | 0.0023 |
| 17.5409 | 207000 | 0.0025 |
| 17.5833 | 207500 | 0.0021 |
| 17.6256 | 208000 | 0.0022 |
| 17.6680 | 208500 | 0.0033 |
| 17.7104 | 209000 | 0.0027 |
| 17.7527 | 209500 | 0.0023 |
| 17.7951 | 210000 | 0.0026 |
| 17.8375 | 210500 | 0.0024 |
| 17.8798 | 211000 | 0.0023 |
| 17.9222 | 211500 | 0.0027 |
| 17.9646 | 212000 | 0.0037 |
| 18.0069 | 212500 | 0.0026 |
| 18.0493 | 213000 | 0.0024 |
| 18.0917 | 213500 | 0.0021 |
| 18.1341 | 214000 | 0.0022 |
| 18.1764 | 214500 | 0.0023 |
| 18.2188 | 215000 | 0.003 |
| 18.2612 | 215500 | 0.0018 |
| 18.3035 | 216000 | 0.0024 |
| 18.3459 | 216500 | 0.0031 |
| 18.3883 | 217000 | 0.0025 |
| 18.4306 | 217500 | 0.0035 |
| 18.4730 | 218000 | 0.0028 |
| 18.5154 | 218500 | 0.0027 |
| 18.5577 | 219000 | 0.002 |
| 18.6001 | 219500 | 0.0022 |
| 18.6425 | 220000 | 0.0022 |
| 18.6849 | 220500 | 0.002 |
| 18.7272 | 221000 | 0.0021 |
| 18.7696 | 221500 | 0.003 |
| 18.8120 | 222000 | 0.0023 |
| 18.8543 | 222500 | 0.0021 |
| 18.8967 | 223000 | 0.0026 |
| 18.9391 | 223500 | 0.0025 |
| 18.9814 | 224000 | 0.0031 |
| 19.0238 | 224500 | 0.0019 |
| 19.0662 | 225000 | 0.0021 |
| 19.1086 | 225500 | 0.0018 |
| 19.1509 | 226000 | 0.0019 |
| 19.1933 | 226500 | 0.0022 |
| 19.2357 | 227000 | 0.0023 |
| 19.2780 | 227500 | 0.0026 |
| 19.3204 | 228000 | 0.0029 |
| 19.3628 | 228500 | 0.0022 |
| 19.4051 | 229000 | 0.0022 |
| 19.4475 | 229500 | 0.0019 |
| 19.4899 | 230000 | 0.0019 |
| 19.5322 | 230500 | 0.0021 |
| 19.5746 | 231000 | 0.0017 |
| 19.6170 | 231500 | 0.0023 |
| 19.6594 | 232000 | 0.002 |
| 19.7017 | 232500 | 0.0023 |
| 19.7441 | 233000 | 0.0023 |
| 19.7865 | 233500 | 0.0016 |
| 19.8288 | 234000 | 0.0022 |
| 19.8712 | 234500 | 0.0018 |
| 19.9136 | 235000 | 0.002 |
| 19.9559 | 235500 | 0.0022 |
| 19.9983 | 236000 | 0.002 |
| 20.0407 | 236500 | 0.0025 |
| 20.0830 | 237000 | 0.0015 |
| 20.1254 | 237500 | 0.0017 |
| 20.1678 | 238000 | 0.0019 |
| 20.2102 | 238500 | 0.0019 |
| 20.2525 | 239000 | 0.0019 |
| 20.2949 | 239500 | 0.0023 |
| 20.3373 | 240000 | 0.002 |
| 20.3796 | 240500 | 0.0013 |
| 20.4220 | 241000 | 0.0016 |
| 20.4644 | 241500 | 0.0026 |
| 20.5067 | 242000 | 0.0025 |
| 20.5491 | 242500 | 0.0014 |
| 20.5915 | 243000 | 0.0022 |
| 20.6338 | 243500 | 0.002 |
| 20.6762 | 244000 | 0.002 |
| 20.7186 | 244500 | 0.0015 |
| 20.7610 | 245000 | 0.0014 |
| 20.8033 | 245500 | 0.0019 |
| 20.8457 | 246000 | 0.0032 |
| 20.8881 | 246500 | 0.0017 |
| 20.9304 | 247000 | 0.0023 |
| 20.9728 | 247500 | 0.0015 |
| 21.0152 | 248000 | 0.0012 |
| 21.0575 | 248500 | 0.002 |
| 21.0999 | 249000 | 0.0024 |
| 21.1423 | 249500 | 0.0015 |
| 21.1846 | 250000 | 0.0014 |
| 21.2270 | 250500 | 0.0015 |
| 21.2694 | 251000 | 0.0016 |
| 21.3118 | 251500 | 0.0014 |
| 21.3541 | 252000 | 0.0014 |
| 21.3965 | 252500 | 0.0019 |
| 21.4389 | 253000 | 0.002 |
| 21.4812 | 253500 | 0.003 |
| 21.5236 | 254000 | 0.0017 |
| 21.5660 | 254500 | 0.0018 |
| 21.6083 | 255000 | 0.0021 |
| 21.6507 | 255500 | 0.0013 |
| 21.6931 | 256000 | 0.0019 |
| 21.7354 | 256500 | 0.0015 |
| 21.7778 | 257000 | 0.0018 |
| 21.8202 | 257500 | 0.0013 |
| 21.8626 | 258000 | 0.0021 |
| 21.9049 | 258500 | 0.0013 |
| 21.9473 | 259000 | 0.0013 |
| 21.9897 | 259500 | 0.0013 |
| 22.0320 | 260000 | 0.0012 |
| 22.0744 | 260500 | 0.0011 |
| 22.1168 | 261000 | 0.0013 |
| 22.1591 | 261500 | 0.0012 |
| 22.2015 | 262000 | 0.0016 |
| 22.2439 | 262500 | 0.0017 |
| 22.2862 | 263000 | 0.0011 |
| 22.3286 | 263500 | 0.0015 |
| 22.3710 | 264000 | 0.0013 |
| 22.4134 | 264500 | 0.0018 |
| 22.4557 | 265000 | 0.0014 |
| 22.4981 | 265500 | 0.0012 |
| 22.5405 | 266000 | 0.0017 |
| 22.5828 | 266500 | 0.0022 |
| 22.6252 | 267000 | 0.0015 |
| 22.6676 | 267500 | 0.0015 |
| 22.7099 | 268000 | 0.002 |
| 22.7523 | 268500 | 0.0017 |
| 22.7947 | 269000 | 0.0021 |
| 22.8370 | 269500 | 0.0012 |
| 22.8794 | 270000 | 0.0018 |
| 22.9218 | 270500 | 0.0014 |
| 22.9642 | 271000 | 0.0014 |
| 23.0065 | 271500 | 0.0015 |
| 23.0489 | 272000 | 0.0016 |
| 23.0913 | 272500 | 0.0013 |
| 23.1336 | 273000 | 0.002 |
| 23.1760 | 273500 | 0.0016 |
| 23.2184 | 274000 | 0.0021 |
| 23.2607 | 274500 | 0.0016 |
| 23.3031 | 275000 | 0.0016 |
| 23.3455 | 275500 | 0.0012 |
| 23.3878 | 276000 | 0.0012 |
| 23.4302 | 276500 | 0.0016 |
| 23.4726 | 277000 | 0.0017 |
| 23.5150 | 277500 | 0.0013 |
| 23.5573 | 278000 | 0.0015 |
| 23.5997 | 278500 | 0.0019 |
| 23.6421 | 279000 | 0.0014 |
| 23.6844 | 279500 | 0.0019 |
| 23.7268 | 280000 | 0.0012 |
| 23.7692 | 280500 | 0.002 |
| 23.8115 | 281000 | 0.0017 |
| 23.8539 | 281500 | 0.0011 |
| 23.8963 | 282000 | 0.0013 |
| 23.9386 | 282500 | 0.0014 |
| 23.9810 | 283000 | 0.0017 |
| 24.0234 | 283500 | 0.0015 |
| 24.0658 | 284000 | 0.0017 |
| 24.1081 | 284500 | 0.0011 |
| 24.1505 | 285000 | 0.0016 |
| 24.1929 | 285500 | 0.0014 |
| 24.2352 | 286000 | 0.0009 |
| 24.2776 | 286500 | 0.0017 |
| 24.3200 | 287000 | 0.0011 |
| 24.3623 | 287500 | 0.0018 |
| 24.4047 | 288000 | 0.0018 |
| 24.4471 | 288500 | 0.0015 |
| 24.4895 | 289000 | 0.0013 |
| 24.5318 | 289500 | 0.0013 |
| 24.5742 | 290000 | 0.0015 |
| 24.6166 | 290500 | 0.0012 |
| 24.6589 | 291000 | 0.0014 |
| 24.7013 | 291500 | 0.0021 |
| 24.7437 | 292000 | 0.0018 |
| 24.7860 | 292500 | 0.0016 |
| 24.8284 | 293000 | 0.0014 |
| 24.8708 | 293500 | 0.0012 |
| 24.9131 | 294000 | 0.0015 |
| 24.9555 | 294500 | 0.001 |
| 24.9979 | 295000 | 0.0014 |
| 25.0403 | 295500 | 0.0014 |
| 25.0826 | 296000 | 0.001 |
| 25.1250 | 296500 | 0.0018 |
| 25.1674 | 297000 | 0.0014 |
| 25.2097 | 297500 | 0.0011 |
| 25.2521 | 298000 | 0.0013 |
| 25.2945 | 298500 | 0.002 |
| 25.3368 | 299000 | 0.0006 |
| 25.3792 | 299500 | 0.0011 |
| 25.4216 | 300000 | 0.0016 |
| 25.4639 | 300500 | 0.0011 |
| 25.5063 | 301000 | 0.0016 |
| 25.5487 | 301500 | 0.0009 |
| 25.5911 | 302000 | 0.0009 |
| 25.6334 | 302500 | 0.0017 |
| 25.6758 | 303000 | 0.0017 |
| 25.7182 | 303500 | 0.0018 |
| 25.7605 | 304000 | 0.001 |
| 25.8029 | 304500 | 0.0011 |
| 25.8453 | 305000 | 0.0015 |
| 25.8876 | 305500 | 0.0018 |
| 25.9300 | 306000 | 0.0009 |
| 25.9724 | 306500 | 0.0011 |
| 26.0147 | 307000 | 0.0013 |
| 26.0571 | 307500 | 0.0015 |
| 26.0995 | 308000 | 0.0007 |
| 26.1419 | 308500 | 0.001 |
| 26.1842 | 309000 | 0.0011 |
| 26.2266 | 309500 | 0.0013 |
| 26.2690 | 310000 | 0.0012 |
| 26.3113 | 310500 | 0.0008 |
| 26.3537 | 311000 | 0.0017 |
| 26.3961 | 311500 | 0.0012 |
| 26.4384 | 312000 | 0.0018 |
| 26.4808 | 312500 | 0.0015 |
| 26.5232 | 313000 | 0.0012 |
| 26.5655 | 313500 | 0.0011 |
| 26.6079 | 314000 | 0.0008 |
| 26.6503 | 314500 | 0.0012 |
| 26.6927 | 315000 | 0.0009 |
| 26.7350 | 315500 | 0.0011 |
| 26.7774 | 316000 | 0.0012 |
| 26.8198 | 316500 | 0.0015 |
| 26.8621 | 317000 | 0.0016 |
| 26.9045 | 317500 | 0.0015 |
| 26.9469 | 318000 | 0.0018 |
| 26.9892 | 318500 | 0.0013 |
| 27.0316 | 319000 | 0.0019 |
| 27.0740 | 319500 | 0.0015 |
| 27.1163 | 320000 | 0.001 |
| 27.1587 | 320500 | 0.0009 |
| 27.2011 | 321000 | 0.0007 |
| 27.2435 | 321500 | 0.0012 |
| 27.2858 | 322000 | 0.0012 |
| 27.3282 | 322500 | 0.0011 |
| 27.3706 | 323000 | 0.0025 |
| 27.4129 | 323500 | 0.0009 |
| 27.4553 | 324000 | 0.0015 |
| 27.4977 | 324500 | 0.0012 |
| 27.5400 | 325000 | 0.0013 |
| 27.5824 | 325500 | 0.0013 |
| 27.6248 | 326000 | 0.0015 |
| 27.6671 | 326500 | 0.0011 |
| 27.7095 | 327000 | 0.0022 |
| 27.7519 | 327500 | 0.001 |
| 27.7943 | 328000 | 0.0009 |
| 27.8366 | 328500 | 0.001 |
| 27.8790 | 329000 | 0.0007 |
| 27.9214 | 329500 | 0.0013 |
| 27.9637 | 330000 | 0.0017 |
| 28.0061 | 330500 | 0.0006 |
| 28.0485 | 331000 | 0.0011 |
| 28.0908 | 331500 | 0.0011 |
| 28.1332 | 332000 | 0.001 |
| 28.1756 | 332500 | 0.0013 |
| 28.2179 | 333000 | 0.0012 |
| 28.2603 | 333500 | 0.001 |
| 28.3027 | 334000 | 0.001 |
| 28.3451 | 334500 | 0.0013 |
| 28.3874 | 335000 | 0.0012 |
| 28.4298 | 335500 | 0.0015 |
| 28.4722 | 336000 | 0.0016 |
| 28.5145 | 336500 | 0.0013 |
| 28.5569 | 337000 | 0.0011 |
| 28.5993 | 337500 | 0.0011 |
| 28.6416 | 338000 | 0.0015 |
| 28.6840 | 338500 | 0.0014 |
| 28.7264 | 339000 | 0.0007 |
| 28.7687 | 339500 | 0.0013 |
| 28.8111 | 340000 | 0.001 |
| 28.8535 | 340500 | 0.0009 |
| 28.8959 | 341000 | 0.0009 |
| 28.9382 | 341500 | 0.0012 |
| 28.9806 | 342000 | 0.0011 |
| 29.0230 | 342500 | 0.0008 |
| 29.0653 | 343000 | 0.0009 |
| 29.1077 | 343500 | 0.0009 |
| 29.1501 | 344000 | 0.0013 |
| 29.1924 | 344500 | 0.0011 |
| 29.2348 | 345000 | 0.0009 |
| 29.2772 | 345500 | 0.0012 |
| 29.3195 | 346000 | 0.0009 |
| 29.3619 | 346500 | 0.0008 |
| 29.4043 | 347000 | 0.0006 |
| 29.4467 | 347500 | 0.001 |
| 29.4890 | 348000 | 0.0012 |
| 29.5314 | 348500 | 0.0013 |
| 29.5738 | 349000 | 0.001 |
| 29.6161 | 349500 | 0.0013 |
| 29.6585 | 350000 | 0.0017 |
| 29.7009 | 350500 | 0.0009 |
| 29.7432 | 351000 | 0.0009 |
| 29.7856 | 351500 | 0.001 |
| 29.8280 | 352000 | 0.0011 |
| 29.8703 | 352500 | 0.0008 |
| 29.9127 | 353000 | 0.0011 |
| 29.9551 | 353500 | 0.0005 |
| 29.9975 | 354000 | 0.0017 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.54.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.0
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7