ORCH-Fusion 150M Full-Stack

Self-orchestrating code generation AI trained on full-stack development patterns.

Model Description

ORCH-Fusion 150M is a 102 million parameter transformer model trained from scratch for full-stack code generation. It understands modern web development frameworks and can generate production-quality code.

Specifications

Metric Value
Parameters 102,436,608
Hidden Size 768
Layers 16
Attention Heads 12
Context Length 4096
Vocabulary 2,276 tokens
Training Loss 0.0157
Validation Loss 0.0149

Capabilities

  • Full-stack code generation (Python, TypeScript, JavaScript)
  • React & Next.js components and pages
  • FastAPI endpoints and services
  • Prisma database schemas and queries
  • Tailwind CSS styling
  • Test generation

Quick Start

from orch.model import OrchForCausalLM
from tokenizers import Tokenizer
import torch

# Load model
model = OrchForCausalLM.from_pretrained("raihan-js/orch-150m-fullstack")
tokenizer = Tokenizer.from_file("tokenizer.json")

# Generate code
prompt = "export default function HomePage() {"
encoding = tokenizer.encode(prompt)
input_ids = torch.tensor([encoding.ids])

output = model.generate(input_ids, max_new_tokens=100, temperature=0.7)
print(tokenizer.decode(output[0].tolist()))

Training

  • 3 epochs on full-stack code dataset
  • Hardware: RTX 3060 12GB
  • Mixed precision (FP16)

Links

License

MIT License

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support