rtdetr-v2-r50-cppe5-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 6.6493
  • Map: 0.6094
  • Mar 100: 0.7099
  • Map 50: 0.9567
  • Map 75: 0.719

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Map Mar 100 Map 50 Map 75
No log 1.0 142 34.3182 0.0607 0.6404 0.094 0.0739
No log 2.0 284 8.2558 0.4949 0.7404 0.8746 0.5321
No log 3.0 426 7.6811 0.596 0.7113 0.9488 0.7037
175.7115 4.0 568 6.7879 0.5943 0.7057 0.9781 0.7188
175.7115 5.0 710 6.6212 0.6087 0.7248 0.9704 0.7148
175.7115 6.0 852 6.6538 0.5936 0.7255 0.972 0.7068
175.7115 7.0 994 6.5767 0.6078 0.7298 0.9675 0.7592
12.1686 8.0 1136 6.6338 0.6246 0.7511 0.9646 0.7952
12.1686 9.0 1278 6.5246 0.598 0.7262 0.9483 0.7194
12.1686 10.0 1420 6.3852 0.6277 0.7369 0.959 0.8146
11.266 11.0 1562 6.6311 0.6092 0.7312 0.9659 0.7514
11.266 12.0 1704 6.4214 0.609 0.7333 0.9642 0.7471
11.266 13.0 1846 6.4222 0.6219 0.7319 0.9696 0.7763
11.266 14.0 1988 6.5066 0.617 0.7426 0.9636 0.7628
10.6436 15.0 2130 6.5157 0.6119 0.7248 0.9767 0.79
10.6436 16.0 2272 6.4737 0.6119 0.7348 0.9571 0.7829
10.6436 17.0 2414 6.5789 0.6326 0.7277 0.9674 0.7798
10.0889 18.0 2556 6.5001 0.6168 0.722 0.9755 0.7703
10.0889 19.0 2698 6.4702 0.614 0.7326 0.963 0.7387
10.0889 20.0 2840 6.5242 0.6151 0.7248 0.9673 0.7568
10.0889 21.0 2982 6.5797 0.6293 0.7298 0.9738 0.7369
9.4174 22.0 3124 6.5303 0.616 0.7355 0.9669 0.7879
9.4174 23.0 3266 6.7147 0.6079 0.7262 0.9668 0.756
9.4174 24.0 3408 6.6836 0.6146 0.7319 0.9725 0.7951
8.9177 25.0 3550 6.6182 0.6048 0.7298 0.9734 0.7162
8.9177 26.0 3692 6.5351 0.6182 0.7156 0.9713 0.7856
8.9177 27.0 3834 6.3831 0.6235 0.7262 0.9782 0.8026
8.9177 28.0 3976 6.4694 0.6194 0.7326 0.9756 0.7649
8.4449 29.0 4118 6.6127 0.6119 0.717 0.9672 0.7576
8.4449 30.0 4260 6.6870 0.6078 0.7312 0.9562 0.7143
8.4449 31.0 4402 6.7105 0.6084 0.7163 0.9659 0.7379
7.9999 32.0 4544 6.6299 0.6091 0.717 0.9607 0.7731
7.9999 33.0 4686 6.7453 0.6062 0.7262 0.9625 0.7409
7.9999 34.0 4828 6.6493 0.6121 0.7191 0.9643 0.7963
7.9999 35.0 4970 6.8267 0.6044 0.7213 0.9668 0.7582
7.5518 36.0 5112 6.8738 0.604 0.7156 0.9669 0.735
7.5518 37.0 5254 6.8444 0.6068 0.7113 0.967 0.7484
7.5518 38.0 5396 6.8525 0.605 0.7142 0.9667 0.7401
7.1858 39.0 5538 6.8547 0.609 0.7149 0.9683 0.7406
7.1858 40.0 5680 6.8616 0.6103 0.7156 0.9697 0.7328

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
9
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ranm26/rtdetr-v2-r50-cppe5-finetune-2

Finetuned
(23)
this model

Evaluation results