classifyani / app.py
amasood's picture
Create app.py
7fb0b0b verified
import streamlit as st
from transformers import ViTFeatureExtractor, ViTForImageClassification
from PIL import Image
import torch
# Load model and feature extractor
MODEL_NAME = "google/vit-base-patch16-224"
feature_extractor = ViTFeatureExtractor.from_pretrained(MODEL_NAME)
model = ViTForImageClassification.from_pretrained(MODEL_NAME)
# Streamlit UI
st.title("Animal Recognition App")
st.write("Upload an image, and the model will identify the animal.")
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
# Preprocess image
inputs = feature_extractor(images=image, return_tensors="pt")
# Predict
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Get label
label = model.config.id2label[predicted_class_idx]
st.success(f"Predicted Animal: **{label}**")