Spaces:
Sleeping
Sleeping
Update conver.py
Browse files
conver.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from typing import List, Tuple, Dict
|
| 3 |
import os
|
| 4 |
-
import re
|
| 5 |
import httpx
|
| 6 |
import json
|
| 7 |
from openai import OpenAI
|
|
@@ -19,10 +18,17 @@ class ConversationConfig:
|
|
| 19 |
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
|
| 20 |
|
| 21 |
class URLToAudioConverter:
|
|
|
|
|
|
|
| 22 |
def __init__(self, config: ConversationConfig, llm_api_key: str):
|
| 23 |
self.config = config
|
| 24 |
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
|
| 25 |
self.llm_out = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
def fetch_text(self, url: str) -> str:
|
| 28 |
if not url:
|
|
@@ -46,44 +52,49 @@ class URLToAudioConverter:
|
|
| 46 |
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
| 47 |
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
| 48 |
)
|
| 49 |
-
|
| 50 |
chat_completion = self.llm_client.chat.completions.create(
|
| 51 |
messages=[{"role": "user", "content": prompt}],
|
| 52 |
model=self.config.model_name,
|
| 53 |
response_format={"type": "json_object"}
|
| 54 |
)
|
| 55 |
-
|
| 56 |
response_content = chat_completion.choices[0].message.content
|
| 57 |
json_str = response_content.strip()
|
| 58 |
-
|
| 59 |
if not json_str.startswith('{'):
|
| 60 |
start = json_str.find('{')
|
| 61 |
if start != -1:
|
| 62 |
json_str = json_str[start:]
|
| 63 |
-
|
| 64 |
if not json_str.endswith('}'):
|
| 65 |
end = json_str.rfind('}')
|
| 66 |
if end != -1:
|
| 67 |
json_str = json_str[:end+1]
|
| 68 |
-
|
| 69 |
return json.loads(json_str)
|
| 70 |
except Exception as e:
|
| 71 |
print(f"Error en extract_conversation: {str(e)}")
|
|
|
|
| 72 |
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
| 73 |
|
| 74 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
| 75 |
-
output_dir = self._create_output_directory()
|
| 76 |
filenames = []
|
|
|
|
| 77 |
try:
|
| 78 |
for i, turn in enumerate(conversation_json["conversation"]):
|
| 79 |
-
filename =
|
| 80 |
voice = voice_1 if i % 2 == 0 else voice_2
|
|
|
|
| 81 |
tmp_path, error = await self._generate_audio(turn["text"], voice)
|
| 82 |
if error:
|
| 83 |
raise RuntimeError(f"Text-to-speech failed: {error}")
|
|
|
|
| 84 |
os.rename(tmp_path, filename)
|
| 85 |
-
filenames.append(filename)
|
| 86 |
-
|
|
|
|
| 87 |
except Exception as e:
|
| 88 |
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
| 89 |
|
|
@@ -92,75 +103,108 @@ class URLToAudioConverter:
|
|
| 92 |
return None, "Text cannot be empty"
|
| 93 |
if not voice:
|
| 94 |
return None, "Voice cannot be empty"
|
|
|
|
| 95 |
voice_short_name = voice.split(" - ")[0]
|
| 96 |
rate_str = f"{rate:+d}%"
|
| 97 |
pitch_str = f"{pitch:+d}Hz"
|
| 98 |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
|
|
|
| 99 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
| 100 |
tmp_path = tmp_file.name
|
| 101 |
await communicate.save(tmp_path)
|
|
|
|
| 102 |
return tmp_path, None
|
| 103 |
|
| 104 |
def _create_output_directory(self) -> str:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
file_path = os.path.join(directory, filename)
|
| 112 |
-
if file_path.endswith(".mp3"):
|
| 113 |
-
file_age = now - os.path.getmtime(file_path)
|
| 114 |
-
if file_age > max_age_seconds:
|
| 115 |
-
os.remove(file_path)
|
| 116 |
|
| 117 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
| 118 |
if not filenames:
|
| 119 |
raise ValueError("No input files provided")
|
|
|
|
| 120 |
try:
|
| 121 |
combined = AudioSegment.empty()
|
| 122 |
for filename in filenames:
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
combined.export(output_file, format="mp3")
|
|
|
|
|
|
|
|
|
|
| 125 |
except Exception as e:
|
| 126 |
raise RuntimeError(f"Failed to combine audio files: {e}")
|
| 127 |
|
| 128 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 129 |
-
self.clean_old_files()
|
| 130 |
text = self.fetch_text(url)
|
|
|
|
| 131 |
words = text.split()
|
| 132 |
if len(words) > self.config.max_words:
|
| 133 |
text = " ".join(words[:self.config.max_words])
|
|
|
|
| 134 |
conversation_json = self.extract_conversation(text)
|
| 135 |
conversation_text = "\n".join(
|
| 136 |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 137 |
)
|
| 138 |
self.llm_out = conversation_json
|
| 139 |
-
audio_files,
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 145 |
-
|
| 146 |
conversation_json = self.extract_conversation(text)
|
| 147 |
conversation_text = "\n".join(
|
| 148 |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 149 |
)
|
| 150 |
-
audio_files,
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
| 154 |
|
| 155 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 156 |
-
|
| 157 |
conversation = {
|
| 158 |
"conversation": [
|
| 159 |
{"speaker": "Host", "text": text},
|
| 160 |
{"speaker": "Co-host", "text": "(Continuación del tema)"}
|
| 161 |
]
|
| 162 |
}
|
| 163 |
-
audio_files,
|
| 164 |
-
output_file = os.path.join(
|
| 165 |
self.combine_audio_files(audio_files, output_file)
|
| 166 |
return text, output_file
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from dataclasses import dataclass
|
| 2 |
from typing import List, Tuple, Dict
|
| 3 |
import os
|
|
|
|
| 4 |
import httpx
|
| 5 |
import json
|
| 6 |
from openai import OpenAI
|
|
|
|
| 18 |
model_name: str = "meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo"
|
| 19 |
|
| 20 |
class URLToAudioConverter:
|
| 21 |
+
BASE_OUTPUT_DIR = "outputs"
|
| 22 |
+
|
| 23 |
def __init__(self, config: ConversationConfig, llm_api_key: str):
|
| 24 |
self.config = config
|
| 25 |
self.llm_client = OpenAI(api_key=llm_api_key, base_url="https://api.together.xyz/v1")
|
| 26 |
self.llm_out = None
|
| 27 |
+
self._ensure_base_output_dir()
|
| 28 |
+
|
| 29 |
+
def _ensure_base_output_dir(self):
|
| 30 |
+
if not os.path.exists(self.BASE_OUTPUT_DIR):
|
| 31 |
+
os.makedirs(self.BASE_OUTPUT_DIR, exist_ok=True)
|
| 32 |
|
| 33 |
def fetch_text(self, url: str) -> str:
|
| 34 |
if not url:
|
|
|
|
| 52 |
f"between two experts. Return ONLY a JSON object with the following structure:\n"
|
| 53 |
'{"conversation": [{"speaker": "Speaker1", "text": "..."}, {"speaker": "Speaker2", "text": "..."}]}'
|
| 54 |
)
|
| 55 |
+
|
| 56 |
chat_completion = self.llm_client.chat.completions.create(
|
| 57 |
messages=[{"role": "user", "content": prompt}],
|
| 58 |
model=self.config.model_name,
|
| 59 |
response_format={"type": "json_object"}
|
| 60 |
)
|
| 61 |
+
|
| 62 |
response_content = chat_completion.choices[0].message.content
|
| 63 |
json_str = response_content.strip()
|
| 64 |
+
|
| 65 |
if not json_str.startswith('{'):
|
| 66 |
start = json_str.find('{')
|
| 67 |
if start != -1:
|
| 68 |
json_str = json_str[start:]
|
| 69 |
+
|
| 70 |
if not json_str.endswith('}'):
|
| 71 |
end = json_str.rfind('}')
|
| 72 |
if end != -1:
|
| 73 |
json_str = json_str[:end+1]
|
| 74 |
+
|
| 75 |
return json.loads(json_str)
|
| 76 |
except Exception as e:
|
| 77 |
print(f"Error en extract_conversation: {str(e)}")
|
| 78 |
+
print(f"Respuesta del modelo: {response_content}")
|
| 79 |
raise RuntimeError(f"Failed to extract conversation: {str(e)}")
|
| 80 |
|
| 81 |
async def text_to_speech(self, conversation_json: Dict, voice_1: str, voice_2: str) -> Tuple[List[str], str]:
|
| 82 |
+
output_dir = Path(self._create_output_directory())
|
| 83 |
filenames = []
|
| 84 |
+
|
| 85 |
try:
|
| 86 |
for i, turn in enumerate(conversation_json["conversation"]):
|
| 87 |
+
filename = output_dir / f"output_{i}.mp3"
|
| 88 |
voice = voice_1 if i % 2 == 0 else voice_2
|
| 89 |
+
|
| 90 |
tmp_path, error = await self._generate_audio(turn["text"], voice)
|
| 91 |
if error:
|
| 92 |
raise RuntimeError(f"Text-to-speech failed: {error}")
|
| 93 |
+
|
| 94 |
os.rename(tmp_path, filename)
|
| 95 |
+
filenames.append(str(filename))
|
| 96 |
+
|
| 97 |
+
return filenames, str(output_dir)
|
| 98 |
except Exception as e:
|
| 99 |
raise RuntimeError(f"Failed to convert text to speech: {e}")
|
| 100 |
|
|
|
|
| 103 |
return None, "Text cannot be empty"
|
| 104 |
if not voice:
|
| 105 |
return None, "Voice cannot be empty"
|
| 106 |
+
|
| 107 |
voice_short_name = voice.split(" - ")[0]
|
| 108 |
rate_str = f"{rate:+d}%"
|
| 109 |
pitch_str = f"{pitch:+d}Hz"
|
| 110 |
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
| 111 |
+
|
| 112 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
| 113 |
tmp_path = tmp_file.name
|
| 114 |
await communicate.save(tmp_path)
|
| 115 |
+
|
| 116 |
return tmp_path, None
|
| 117 |
|
| 118 |
def _create_output_directory(self) -> str:
|
| 119 |
+
# Crear carpeta única dentro de outputs/
|
| 120 |
+
random_bytes = os.urandom(8)
|
| 121 |
+
folder_name = base64.urlsafe_b64encode(random_bytes).decode("utf-8").rstrip("=")
|
| 122 |
+
full_path = os.path.join(self.BASE_OUTPUT_DIR, f"podcast_{folder_name}")
|
| 123 |
+
os.makedirs(full_path, exist_ok=True)
|
| 124 |
+
return full_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
def combine_audio_files(self, filenames: List[str], output_file: str) -> None:
|
| 127 |
if not filenames:
|
| 128 |
raise ValueError("No input files provided")
|
| 129 |
+
|
| 130 |
try:
|
| 131 |
combined = AudioSegment.empty()
|
| 132 |
for filename in filenames:
|
| 133 |
+
audio_segment = AudioSegment.from_file(filename, format="mp3")
|
| 134 |
+
combined += audio_segment
|
| 135 |
+
|
| 136 |
combined.export(output_file, format="mp3")
|
| 137 |
+
|
| 138 |
+
# NO eliminar archivos aquí. Solo en limpieza periódica.
|
| 139 |
+
|
| 140 |
except Exception as e:
|
| 141 |
raise RuntimeError(f"Failed to combine audio files: {e}")
|
| 142 |
|
| 143 |
async def url_to_audio(self, url: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
|
|
|
| 144 |
text = self.fetch_text(url)
|
| 145 |
+
|
| 146 |
words = text.split()
|
| 147 |
if len(words) > self.config.max_words:
|
| 148 |
text = " ".join(words[:self.config.max_words])
|
| 149 |
+
|
| 150 |
conversation_json = self.extract_conversation(text)
|
| 151 |
conversation_text = "\n".join(
|
| 152 |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 153 |
)
|
| 154 |
self.llm_out = conversation_json
|
| 155 |
+
audio_files, folder_name = await self.text_to_speech(
|
| 156 |
+
conversation_json, voice_1, voice_2
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
final_output = os.path.join(folder_name, "combined_output.mp3")
|
| 160 |
+
self.combine_audio_files(audio_files, final_output)
|
| 161 |
+
return final_output, conversation_text
|
| 162 |
|
| 163 |
async def text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 164 |
+
"""Procesamiento normal con LLM"""
|
| 165 |
conversation_json = self.extract_conversation(text)
|
| 166 |
conversation_text = "\n".join(
|
| 167 |
f"{turn['speaker']}: {turn['text']}" for turn in conversation_json["conversation"]
|
| 168 |
)
|
| 169 |
+
audio_files, folder_name = await self.text_to_speech(
|
| 170 |
+
conversation_json, voice_1, voice_2
|
| 171 |
+
)
|
| 172 |
+
final_output = os.path.join(folder_name, "combined_output.mp3")
|
| 173 |
+
self.combine_audio_files(audio_files, final_output)
|
| 174 |
+
return final_output, conversation_text
|
| 175 |
|
| 176 |
async def raw_text_to_audio(self, text: str, voice_1: str, voice_2: str) -> Tuple[str, str]:
|
| 177 |
+
"""Modo sin LLM (texto directo)"""
|
| 178 |
conversation = {
|
| 179 |
"conversation": [
|
| 180 |
{"speaker": "Host", "text": text},
|
| 181 |
{"speaker": "Co-host", "text": "(Continuación del tema)"}
|
| 182 |
]
|
| 183 |
}
|
| 184 |
+
audio_files, folder_name = await self.text_to_speech(conversation, voice_1, voice_2)
|
| 185 |
+
output_file = os.path.join(folder_name, "raw_podcast.mp3")
|
| 186 |
self.combine_audio_files(audio_files, output_file)
|
| 187 |
return text, output_file
|
| 188 |
+
|
| 189 |
+
def clean_old_files(self, max_age_seconds=86400):
|
| 190 |
+
"""
|
| 191 |
+
Borra carpetas y archivos en BASE_OUTPUT_DIR que tengan más de max_age_seconds (por defecto 24h)
|
| 192 |
+
"""
|
| 193 |
+
if not os.path.exists(self.BASE_OUTPUT_DIR):
|
| 194 |
+
return
|
| 195 |
+
now = time.time()
|
| 196 |
+
for folder in os.listdir(self.BASE_OUTPUT_DIR):
|
| 197 |
+
folder_path = os.path.join(self.BASE_OUTPUT_DIR, folder)
|
| 198 |
+
if os.path.isdir(folder_path):
|
| 199 |
+
try:
|
| 200 |
+
mtime = os.path.getmtime(folder_path)
|
| 201 |
+
if now - mtime > max_age_seconds:
|
| 202 |
+
# Borramos carpeta completa
|
| 203 |
+
for root, dirs, files in os.walk(folder_path, topdown=False):
|
| 204 |
+
for name in files:
|
| 205 |
+
os.remove(os.path.join(root, name))
|
| 206 |
+
for name in dirs:
|
| 207 |
+
os.rmdir(os.path.join(root, name))
|
| 208 |
+
os.rmdir(folder_path)
|
| 209 |
+
except Exception:
|
| 210 |
+
pass
|