SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a sentence-transformers model finetuned from sentence-transformers/stsb-distilbert-base on the sentence-transformers/quora-duplicates dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/stsb-distilbert-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl")
sentences = [
'Is Cicret a scam?',
'Is the Cicret Bracelet a scam?',
'Can you eat only once a day?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
| Metric |
Value |
| cosine_accuracy |
0.816 |
| cosine_accuracy_threshold |
0.7867 |
| cosine_f1 |
0.7286 |
| cosine_f1_threshold |
0.7353 |
| cosine_precision |
0.6746 |
| cosine_recall |
0.7919 |
| cosine_ap |
0.7731 |
| dot_accuracy |
0.807 |
| dot_accuracy_threshold |
150.9795 |
| dot_f1 |
0.7224 |
| dot_f1_threshold |
137.3444 |
| dot_precision |
0.6641 |
| dot_recall |
0.7919 |
| dot_ap |
0.7492 |
| manhattan_accuracy |
0.81 |
| manhattan_accuracy_threshold |
195.8866 |
| manhattan_f1 |
0.7246 |
| manhattan_f1_threshold |
237.6859 |
| manhattan_precision |
0.6293 |
| manhattan_recall |
0.854 |
| manhattan_ap |
0.7611 |
| euclidean_accuracy |
0.81 |
| euclidean_accuracy_threshold |
8.7739 |
| euclidean_f1 |
0.7261 |
| euclidean_f1_threshold |
10.8438 |
| euclidean_precision |
0.6281 |
| euclidean_recall |
0.8602 |
| euclidean_ap |
0.7612 |
| max_accuracy |
0.816 |
| max_accuracy_threshold |
195.8866 |
| max_f1 |
0.7286 |
| max_f1_threshold |
237.6859 |
| max_precision |
0.6746 |
| max_recall |
0.8602 |
| max_ap |
0.7731 |
Paraphrase Mining
| Metric |
Value |
| average_precision |
0.5349 |
| f1 |
0.5395 |
| precision |
0.5175 |
| recall |
0.5635 |
| threshold |
0.762 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.9646 |
| cosine_accuracy@3 |
0.9926 |
| cosine_accuracy@5 |
0.9956 |
| cosine_accuracy@10 |
0.9986 |
| cosine_precision@1 |
0.9646 |
| cosine_precision@3 |
0.4293 |
| cosine_precision@5 |
0.2754 |
| cosine_precision@10 |
0.1452 |
| cosine_recall@1 |
0.8301 |
| cosine_recall@3 |
0.9609 |
| cosine_recall@5 |
0.9808 |
| cosine_recall@10 |
0.9935 |
| cosine_ndcg@10 |
0.9795 |
| cosine_mrr@10 |
0.979 |
| cosine_map@100 |
0.9718 |
| dot_accuracy@1 |
0.9574 |
| dot_accuracy@3 |
0.9876 |
| dot_accuracy@5 |
0.9924 |
| dot_accuracy@10 |
0.9978 |
| dot_precision@1 |
0.9574 |
| dot_precision@3 |
0.4257 |
| dot_precision@5 |
0.2737 |
| dot_precision@10 |
0.1447 |
| dot_recall@1 |
0.8238 |
| dot_recall@3 |
0.9538 |
| dot_recall@5 |
0.9764 |
| dot_recall@10 |
0.9918 |
| dot_ndcg@10 |
0.9741 |
| dot_mrr@10 |
0.9731 |
| dot_map@100 |
0.9646 |
Training Details
Training Dataset
sentence-transformers/quora-duplicates
Evaluation Dataset
sentence-transformers/quora-duplicates
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
num_train_epochs: 1
warmup_ratio: 0.1
fp16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: False
per_device_train_batch_size: 64
per_device_eval_batch_size: 64
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: True
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: None
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
loss |
cosine_map@100 |
quora-duplicates-dev_average_precision |
quora-duplicates_max_ap |
| 0 |
0 |
- |
- |
0.9245 |
0.4200 |
0.6890 |
| 0.0640 |
100 |
0.2535 |
- |
- |
- |
- |
| 0.1280 |
200 |
0.1732 |
- |
- |
- |
- |
| 0.1599 |
250 |
- |
0.1021 |
0.9601 |
0.5033 |
0.7342 |
| 0.1919 |
300 |
0.1465 |
- |
- |
- |
- |
| 0.2559 |
400 |
0.1186 |
- |
- |
- |
- |
| 0.3199 |
500 |
0.1159 |
0.0773 |
0.9653 |
0.5247 |
0.7453 |
| 0.3839 |
600 |
0.1088 |
- |
- |
- |
- |
| 0.4479 |
700 |
0.0993 |
- |
- |
- |
- |
| 0.4798 |
750 |
- |
0.0665 |
0.9666 |
0.5264 |
0.7655 |
| 0.5118 |
800 |
0.0952 |
- |
- |
- |
- |
| 0.5758 |
900 |
0.0799 |
- |
- |
- |
- |
| 0.6398 |
1000 |
0.0855 |
0.0570 |
0.9709 |
0.5391 |
0.7717 |
| 0.7038 |
1100 |
0.0804 |
- |
- |
- |
- |
| 0.7678 |
1200 |
0.073 |
- |
- |
- |
- |
| 0.7997 |
1250 |
- |
0.0513 |
0.9719 |
0.5329 |
0.7662 |
| 0.8317 |
1300 |
0.0741 |
- |
- |
- |
- |
| 0.8957 |
1400 |
0.0699 |
- |
- |
- |
- |
| 0.9597 |
1500 |
0.0755 |
0.0476 |
0.9718 |
0.5349 |
0.7731 |
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 0.039 kWh
- Carbon Emitted: 0.015 kg of CO2
- Hours Used: 0.169 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}